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Abstract

We introduce the k-experts problem - a gen-
eralization of the classic Prediction with Ex-
pert’s Advice framework. Unlike the classic
version, where the learner selects exactly one
expert from a pool of N experts at each round,
in this problem, the learner can select a subset
of k experts at each round (1 ≤ k ≤ N). The
reward obtained by the learner at each round
is assumed to be a function of the k selected
experts. The primary objective is to design
an online learning policy with a small regret.
In this pursuit, we propose SAGE (Sampled
Hedge) - a framework for designing efficient
online learning policies by leveraging statisti-
cal sampling techniques. For a wide class of
reward functions, we show that SAGE either
achieves the first sublinear regret guarantee
or improves upon the existing ones. Further-
more, going beyond the notion of regret, we
fully characterize the mistake bounds achiev-
able by online learning policies for stable loss
functions. We conclude the paper by estab-
lishing a tight regret lower bound for a variant
of the k-experts problem and carrying out
experiments with standard datasets.

1 INTRODUCTION

The classic Prediction with Expert’s Advice problem,
also known as the Experts problem in the literature,
is a canonical framework for online learning (Cesa-
Bianchi and Lugosi, 2006). This problem is usually
formulated as a two-player sequential game played be-
tween a learner and an adversary. Consider a set of
N experts indexed by the set [N ] = {1, 2, . . . , N}. At
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each round t, the adversary secretly selects a reward
vector rt ∈ [0, 1]N for the experts. At the same time
(without knowing the rewards for the present round),
the learner selects an expert (possibly randomly) and
then receives a reward equal to the reward of the chosen
expert. The goal of the learner is to design an online
learning policy that incurs a small regret. Recall that
the regret of an online learning policy over a given time
horizon is defined as the difference between the reward
accumulated by the best fixed expert in hindsight and
the total expected reward accrued by the policy (see
Eqn. (1)). Many online learning policies achieving sub-
linear regrets in this setting are known, most notably,
Hedge (Vovk, 1998; Freund and Schapire, 1997).

In this paper, we initiate the study of the k-experts
problem - a generalization of the above Experts frame-
work. The k-experts problem arises in many settings,
including online ad placement, personalized news rec-
ommendation, adaptive feature selection, and paging.
In the k-experts problem, instead of selecting only
one expert at each round, the learner selects a sub-
set St ⊆ [N ] containing k experts at each round t
(1 ≤ k ≤ N). The reward q(St) received by the learner
at round t depends on the rewards of the experts in
the chosen set St. Table 1 lists some variants of the
k-experts problem considered in this paper. In the
Sum-reward variant, the reward accrued by the learner
at round t is given by the sum of the rewards of the
experts in the chosen set St. In particular, let pti de-
note the (conditional) marginal probability that the ith
expert is included in the set St, given the history Ft−1

of the game up to round t− 1. Then, we can express
the (conditional) expected reward for the tth round as
E[qsum(St)|Ft−1] = E[

∑
i∈St

rti|Ft−1] = 〈rt,pt〉. How-
ever, unlike the Sum-reward variant, the expected ac-
crued reward for other variants depends on higher-order
joint inclusion probabilities as well (as opposed to only
marginals). In our most general case, apart from mono-
tonicity, we do not impose any other condition (e.g.,
submodularity (Streeter and Golovin, 2007)) on the
reward function. For each of the above variants, we
consider the problem of designing an online expert
selection policy that minimizes the regret RT (or a
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Table 1: Variants of the k-experts problem
Sum-reward Max-reward Pairwise-reward Monotone reward

qsum(St) =
∑
i∈St

rti qmax(St) = maxi∈St rti qpair(St) =
∑
i,j∈St

ritrjt qmonotone(St) = ft(S)

variant of it) over a horizon of length T :

RT = max
S:|S|=k

T∑
t=1

q(S)−
T∑
t=1

Eq(St). (1)

In the above, the expectation in the second term is
taken with respect to any randomness of the learner.

Related work: A special case of the k-experts
problem is Online N -ary prediction with k-sets, which
we briefly refer to as the k-sets problem (Koolen et al.,
2010). In this problem, a learner sequentially pre-
dicts the next symbol for an unknown N -ary sequence
y = (y1, y2, . . . , yT ) chosen by an adversary. The sym-
bols are revealed to the learner sequentially in an online
fashion. However, instead of predicting a single sym-
bol ŷt ∈ [N ] at each round, the learner is allowed to
output a subset St, consisting of k symbols at round t.
The learner’s prediction for round t is considered to be
correct if and only if the predicted set St contains the
true symbol yt. In the event of a correct prediction,
the learner receives unit reward, else, it receives zero
rewards for that round. The goal of the learner is to
maximize its cumulative reward over a given time hori-
zon. It is easy to see that the above problem is a special
case of the k-experts problem with the Sum-reward
variant, where the adversary’s actions are constrained
as rti ∈ {0, 1} with

∑N
i=1 rti = 1,∀t, i.

In a seminal paper, Cover (1966) studied the fundamen-
tal limits of online binary prediction, which is a special
case of the k-sets problem with N = 2 and k = 1.
Cover gave a complete characterization of the set of all
stable reward profiles achievable by online policies (see
Section 3 for the definition of stability). Fifty years
later, Rakhlin and Sridharan (2016) generalized Cover’s
result to an arbitrary alphabet of size N , but still re-
quiring k = 1. The characterization of the prediction
error for the k-sets problem for an arbitrary N and
k has been a long-standing open problem.

Coming back to the problem of minimizing the static
regret for the k-sets problem, a quick-and-dirty ap-
proach can be used to reduce the problem to an instance
of the classic Experts problem with a much larger set
of experts, which we call meta-experts. In this reduc-
tion, a meta-expert is identified with one of the

(
N
k

)
possible subsets of experts of size k. One can then use
any known low-regret prediction policy, such as Hedge,
on the meta-experts to design an online learning policy

for the k-sets problem. Koolen et al. (2010) referred
to the resulting Hedge policy as Expanded Hedge. An
obvious challenge with this approach is to overcome
the severe computational inefficiency of the resulting
online policy, which, apparently, needs to keep track
of exponentially many experts. To resolve this issue,
Koolen et al. (2010) proposed the Component Hedge
(CH) algorithm and showed that the proposed policy
yields a tight regret bound. However, the CH algo-
rithm involves a projection and decomposition step,
each of which costs O(N2). Although the projection
step was later shown to be implementable in linear
time (Herbster and Warmuth, 2001, Theorem 7), the
best-known algorithm for the decomposition step still
takes O(N2) time (Warmuth and Kuzmin, 2008, Algo-
rithm 2). The work Suehiro et al. (2012) speculates the
existence of an O(N logN) algorithm for the decompo-
sition. However, their algorithm (Algorithm 4) and its
analysis mentioned in Theorem 10 of the paper still
has O(N2) complexity. We refer the readers to Taki-
moto and Hatano (2013) for an excellent survey of the
efficient projection and decomposition schemes for the
k-sets and other online combinatorial optimization
problems. The k-sets problem has also been investi-
gated by Daniely and Mansour (2019), as an instance
of the paging problem. The authors alleviated the com-
plexity of the naive Hedge implementation by reducing
it to a problem of sequential sampling from a recur-
sively defined distribution. Unfortunately, the resulting
policy is still sufficiently complex (Ω(N2)). Recently,
Bhattacharjee et al. (2020) studied the paging problem
and proposed an efficient and regret-optimal Follow-
the-Perturbed-Leader -style policy. Although simple to
implement, their algorithm does not admit an adap-
tive regret bound. Finally, the papers Krause and
Golovin (2014); Streeter and Golovin (2007); Harvey
et al. (2020) studied online maximization of monotone
submodular reward functions. However, the problem
of achieving sublinear regret for arbitrary monotone
reward functions has been wide open.

Our contributions: We make the following contri-
butions in this paper:

1. In Section 1.1, we introduce SAGE - an efficient,
projection-free, regret-optimal online prediction
framework.

2. In Section 3, we generalize Cover (1966)’s result
on binary sequence prediction by characterizing
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the set of all stable error profiles achievable by
online learning policies for the N -ary prediction
problem with k-sets.

3. In Section 4, we design two online policies for the
k-sets problem using the SAGE framework. The
policy in Section 4.1 runs in linear time, admits an
adaptive regret bound, and overcomes the exist-
ing quadratic computational barrier (see Table 2).
The policy uses standard sub-routines such as Fast
Fourier Transform and Madow’s sampling. In Sec-
tion 4.2, we propose another prediction policy for
the k-sets problem based on the FTRL framework.

4. In Section 5, using the SAGE framework, we de-
sign an improper learning policy that achieves
O(
√
T ) regret for the Pairwise-reward variant of

the k-experts problem.

5. In Section 6, we use the SAGE framework to design
an efficient online prediction policy for arbitrary
Monotone reward functions. This policy works by
approximating the reward with modular functions.
To the best of our knowledge, this is the first on-
line learning policy for arbitrary monotone reward
functions with a guaranteed O(

√
T ) regret.

6. In Section 7, we establish a tight regret
lower bound for the Max-reward version of the
k-experts problem.

We conclude this section by giving a brief overview and
key intuition for the SAGE framework.

1.1 Key Insights for SAGE

We begin our discussion with the Sum-reward variant
in the k-experts problem. As pointed out earlier, the
expected sum reward obtained by any policy depends
only on the first-order marginal inclusion probabilities
and not on the higher-order joint distribution. In par-
ticular, any two online prediction policies, that have
the same conditional marginal inclusion probabilities,
yield exactly the same reward per round. This sim-
ple observation leads to the SAGE meta-algorithm de-
scribed in Algorithm 1. From the pseudocode, it is
clear that the SAGE meta-algorithm has the same re-
gret as the base policy πbase. However, unlike the base
policy (which could be computationally intractable),
the SAGE policy can be efficiently implemented in many
problems. For example, we show in Section 4.1 that
when Hedge is used as the base policy for the k-sets
problem, the marginalization in line 3 reduces to the
evaluation of certain elementary symmetric polynomi-
als. These quantities can be efficiently computed using
Fast Fourier Transform techniques. Furthermore, an

Algorithm 1 The Generic SAGE Meta-Algorithm
1: Start with a low-regret base online prediction policy
πbase (e.g., Hedge). We do not require the base
policy πbase to be computationally efficient.

2: for each round t do
3: Efficiently compute the first-order marginal in-

clusion probabilities (pt) corresponding to the
policy πbase. This step amounts to marginalizing
the joint distribution induced by the policy πbase.

4: Efficiently sample k elements according to the
marginal distribution pt computed above.

5: end for

efficient sampler for line 4 can be borrowed from the
statistical sampling literature, reviewed in Section 2.

Note that SAGE is not necessarily regret-optimal for ar-
bitrary monotone reward functions where the expected
reward depends on higher-order inclusion probabili-
ties. However, in Section 6, we show that we can still
use the SAGE framework in this case by approximating
the given reward function with modular reward func-
tions. The approximation utilizes recent results from
non-submodular set function optimization theory.

2 PRELIMINARIES: SAMPLING
WITHOUT REPLACEMENT

The proposed SAGE meta-algorithm makes critical use
of certain systematic sampling techniques from statis-
tics (viz. line 4 of Algorithm 1). Consider the problem
of sampling without replacement where one needs to
randomly sample a k-set S from the universe [N ] such
that item i ∈ [N ] is included in the set S with a pre-
specified marginal inclusion probability pi, ∀i ∈ [N ].
Formally, if the k-set S is sampled with probability
P(S), we require that

∑
S:i∈S,|S|=k P(S) = pi,∀i ∈ [N ].

Since the sampling is done without replacement, for
any k-set S, we have:

∑
i∈[N ] 1(i ∈ S) = k. Taking ex-

pectation of both sides with respect to the randomness
of the sampler, we conclude that any feasible marginal
inclusion probability vector p must belong to the set
∆k
N defined as follows:∑

i∈[N ]

pi = k, and 0 ≤ pi ≤ 1,∀i ∈ [N ]. (2)

It turns out that condition (2) is also sufficient for
designing efficient sampling schemes that leads to the
marginal inclusion probability vector p. Such sampling
schemes have been extensively studied in the statisti-
cal sampling literature under the heading of unequal
probability sampling design (Tillé, 1996; Hartley, 1966;
Hanif and Brewer, 1980). In this paper, we use a linear-
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Table 2: Performance comparison among different policies for the k-sets problem
Policies Reference Regret bound Complexity

FTPL (Gaussian perturbation) Cohen and Hazan (2015) 2
√

2k2T ln Ne
k Õ(N)

Component Hedge Koolen et al. (2010)
√

2kT ln N
k O(N2)

SAGE (with πbase = Hedge) This paper
√

2kT ln Ne
k Õ(N)

SAGE (with πbase = FTRL ) This paper 2
√

2kT ln N
k Õ(N)

time exact sampling scheme proposed by Madow et al.
(1949) as outlined below in Algorithm 2.

Algorithm 2 Madow’s Sampling Scheme
Input: A universe [N ] of size N , cardinality of the

sampled set k, and a marginal inclusion probability
vector p = (p1, p2, . . . , pN ) satisfying condition (2)

Output: A random k-set S with |S| = k such that,
P(i ∈ S) = pi,∀i ∈ [N ]

1: Define Π0 = 0, and Πi = Πi−1 + pi,∀1 ≤ i ≤ N.
2: Sample a uniformly distributed random variable U

from the interval [0, 1].
3: S ← ∅
4: for i← 0 to k − 1 do
5: Select the element j if Πj−1 ≤ U + i < Πj .
6: S ← S ∪ {j}.
7: end for
8: return S

Correctness: The correctness of Madow’s sampling
scheme is easy to establish. From the necessary condi-
tion (2), it follows that Algorithm 2 selects exactly k ele-
ments. Furthermore, the element j is selected if the ran-
dom variable U ∈ tNi=1[Πj−1− i,Πj− i). Since U is uni-
formly distributed in [0, 1], the probability that the ele-
ment j is selected is equal to Πj−Πj−1 = pj ,∀j ∈ [N ].

3 FUNDAMENTAL LIMITS OF
ONLINE PREDICTION WITH
k-sets

Consider the canonical binary prediction problem stud-
ied by Cover (1966). Assume that an adversary secretly
selects a binary sequence y = (y1, y2, . . . , yT ). The se-
quence is revealed to the learner one symbol at a time
according to the following protocol - upon seeing the
initial segment of the sequence yt−1

1 ≡ (y1, y2, . . . , yt−1)
at time t, the learner makes a (randomized) guess ŷt
for the tth element of the sequence yt. The actual
value of yt is then revealed to the learner after the
prediction. Let µA(y) denote the fraction of mistakes
made by a randomized prediction algorithm A for the
sequence y, i.e., µA(y) = EA[T−1

∑T
t=1 1(yt 6= ŷt)],

where the expectation is taken with respect to the
randomness of the prediction algorithm. In Eqn. (5)
below, we show that irrespective of the prediction al-
gorithm A, the average fraction of errors µA(·) over
all possible 2T binary sequences is precisely 1/2. A loss
function φ : {±1}T → [0, 1] is said to be achievable if
there exists an online prediction policy A such that
the average prediction error under the policy A for
any sequence is upper bounded by the function φ, i.e.,
µA(y) ≤ φ(y),∀y. An immediate question is to char-
acterize the set of all achievable loss functions φ(·).
For a given sequence y, let φ(. . . , j, . . .) be a shorthand
for the quantity φ(y1, y2, . . . , yt−1, j, yt+1, . . . , yT ). We
call a loss function φ : {±1}T → [0, 1] to be stable if it
satisfies the following inequality for all y ∈ {±1}T and
for all time index 1 ≤ t ≤ T :

|φ(. . . , +1︸︷︷︸
tth coordinate

, . . .)− φ(. . . , −1︸︷︷︸
tth coordinate

, . . .)|

≤ 1

T
. (3)

In this setup, Cover (1966) proved the following result:

Theorem 1 (Cover’66) Suppose the loss function φ :
{±1}T → [0, 1] is stable. Then φ(·) is achievable if and
only if Eφ(z) ≥ 1/2, where the expectation is taken with
respect to the i.i.d. uniform distribution over {±1}T .

We emphasize that although the statement of Theorem
1 involves an expectation, no probabilistic assumption
was made on the sequence y. Rakhlin and Sridharan
(2016) extended Theorem 1 to theN -ary setting. In this
paper, we generalize the result further to the k-sets
setting where, instead of predicting a single value ŷt,
the learner is allowed to predict a (randomized) subset
St ⊆ [N ] containing k elements. Thus, the average loss
incurred by a prediction policy A for the sequence y is
given by:

µA(y) = EA
[

1

T

T∑
t=1

1(yt /∈ St)
]
, (4)

where the expectation is taken with respect to the ran-
domness of the policy A. Uniformly averaging the loss
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function µA(·) over all NT possible N -ary sequences y
(equivalently, endowing the set of all sequences in [N ]T

the i.i.d. uniform probability measure), we have

EµA(y) = EEA
[ 1

T

T∑
t=1

1(yt /∈ St)
]

(Fubini’s Th.)
= EAE

[ 1

T

T∑
t=1

1(yt /∈ St)
]

(a)
= 1− k

N
, (5)

where (a) follows from the fact that |St| = k, ∀t. As
in condition (3), we call a loss function φ : [N ]T →
[0, 1] to be stable if for all sequences y ∈ [N ]T and all
coordinates t of φ the following two conditions hold:

max
i∈[N ]

φ(. . . , i, . . .)− 1

N

∑
j∈[N ]

φ(. . . , j, . . .) ≤ k

NT
, (6)

1

N

∑
j∈[N ]

φ(. . . , j, . . .)− min
i∈[N ]

φ(. . . , i, . . .) ≤
(
1− k

N

) 1

T
.

(7)

Our first result generalizes Cover’s theorem by showing
that conditions (6) and (7) together are also sufficient
for the achievability.

Theorem 2 Suppose the loss function φ : [N ]T →
[0, 1] is stable. Then φ(·) is achievable by some online
policy if and only if Eφ(z) ≥ 1 − k/N, where the ex-
pectation is taken w.r.t. the i.i.d. uniform distribution
over [N ]T .

The necessity part of Theorem 2 has already been
established in Eqn. (5) above. The proof of sufficiency
is constructive and proceeds in two phases. In Phase-I,
at each round t, we compute a vector pt satisfying the
feasibility condition (2), such that pti gives the correct
marginal inclusion probability of the element i ∈ [N ]
that achieves the loss function φ(·). In Phase-II, we
sample a k-set St ⊆ [N ] according to the marginal
inclusion probabilities pt using Algorithm 2. Please
refer to Section 11.1 of the supplementary material for
the proof of Theorem 2.

Discussion: It is to be noted that directly using the
generic online policy appearing in the achievability
proof of Theorem 2 could be intractable in terms of
computation or memory requirements. A more seri-
ous issue with the generic prediction policy is that it
requires the loss function to be stable, which limits
its applicability. Similar to the treatment in Rakhlin
and Sridharan (2016), it might be possible to work
with some relaxation of the loss function to derive a
tractable policy. In the rest of the paper, we show

that near-optimal inclusion probabilities may be effi-
ciently computed via alternative methods, which result
in low-regret efficient online prediction policies.

4 LEARNING POLICIES FOR THE
k-sets PROBLEM

In this section, we propose two different efficient online
policies for the k-sets problem. The first policy uses
Hedge as the base policy and the second policy utilizes
the standard Follow-the-Regularized-Leader framework.

4.1 k-sets with Hedge

For the simplicity of exposition, we use the the standard
Hedge policy as our base policy in conjunction with the
SAGE meta-algorithm. It will be clear from the sequel
that any other Experts policy, such as Squint (Koolen
and Van Erven, 2015) or AdaHedge (Erven et al., 2011),
may also be used as the base policy, leading to more
refined regret bounds.

1. The Base Policy: We start with the standard
meta-experts framework as discussed in Section 1. De-
fine a collection of

(
N
k

)
experts, each corresponding to a

distinct k-subset of the set [N ]. Assume that the learner
predicts the set S with probability pt(S),∀S ∈

(
[N ]
k

)
.

The expected reward accrued by the learner when the
adversary chooses symbol yt at time t is given by:

E
[ ∑
S:yt∈S

1× 1(St = S) +
∑

S:yt /∈S

0× 1(St = S)
]

= P(yt ∈ St) = pt(yt), (8)

where pt(i) :=
∑
S:i∈S pt(S) is the marginal inclusion

probability of the ith element in the predicted k-set
S. We now use the Hedge policy as our base policy
for the resulting Experts problem. Let the indicator
variables rτ (i) := 1(yτ = i),∀i encode the symbol
chosen by the adversary at round τ . Furthermore, let
the variable rτ (S) :=

∑
i∈S rτ (i) denote the reward

accrued by the expert S at round τ . The cumulative
reward accumulated by the expert S up to the round
t− 1 is given by Rt−1(S) =

∑t−1
τ=1 rτ (S). Overloading

the notations a bit, let the variable Rt−1(i) denote
the number of times the ith element appears in the
sub-sequence yt−1

1 . The Hedge policy with learning
rate η > 0 chooses the expert S at round t with the
following probability (Freund and Schapire, 1997; Vovk,
1998):

pt(S) =
wt−1(S)∑

S′⊆[N ]:|S′|=k wt−1(S′)
, ∀S ∈

(
[N ]

k

)
,

(9)

where wτ (S) := exp(ηRτ (S)).
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2. Efficient Computation of the Inclusion Prob-
abilities: The marginal inclusion probabilities for
each of the N elements can be obtained by marginal-
izing the joint distribution given by Eqn. (9). Let
wt−1(i) := exp(ηRt−1(i)). We have

pt(i) =
∑

S:|S|=k,i∈S

pt(S)

=
wt−1(i)

∑
S⊆[N ]\{i}:|S|=k−1 wt−1(S)∑

S′⊆[N ]:|S′|=k wt−1(S′)
, (10)

where we have used the fact that for any S ⊆ [N ] \ {i},
we have wt−1(i)wt−1(S) = wt−1(S ∪ {i}). Clearly,∑
i∈[N ]

pt(i) =

∑
i∈[N ] wt−1(i)

∑
S⊂[N ]\{i}:|S|=k−1 wt−1(S)∑

S′⊂[N ]:|S′|=k wt−1(S′)

(a)
= k, (11)

where step (a) follows from the fact that for any k-set
S, the term wt−1(S) appears in the numerator exactly
k times. Therefore, the marginal inclusion probabil-
ities in Eqn. (10) satisfy the feasibility condition (2).
Hence, given the marginal inclusion probabilities, Al-
gorithm 2 may be used to efficiently sample the pre-
dicted k-set. However, naively computing the marginal
inclusion probabilities using Eqn. (10) requires evalu-
ating sums of

(
N−1
k−1

)
terms, which is computationally

intractable. This difficulty can be alleviated upon re-
alizing that both the numerator and denominator of
Eqn. (10) can be expressed in terms of elementary
symmetric polynomials as shown below. For any vec-
tor w = (w1, w2, . . . , wN ) ∈ RN , define the associated
elementary symmetric polynomial (ESP) of order l as:

el(w) =
∑

I⊆[N ],|I|=l

∏
j∈I

wj . (12)

Furthermore, for any index i ∈ [N ], let w−i ≡
(w1, . . . , wi−1, wi+1, . . . , wN ) ∈ RN−1 denote the sub-
vector with its ith component removed. Then, from
Eqn. (10), it follows that pt(i) =

wt−1(i)ek−1(wt−1,−i)
ek(wt−1) .

Hence, the marginal inclusion probabilities can be ex-
pressed in terms of symmetric polynomials that can
be efficiently computed in O(N log2(k)) time via Fast
Fourier Transform methods (see, e.g., Shpilka and
Wigderson (2001)). Further speedup is possible by
exploiting the fact that the weight of only one of the
components change at a round. This faster iterative
method is derived in Section 11.2 of the supplementary
material.

3. Sampling the predicted set: Upon computing
the marginal inclusion probabilities, we use Madow’s
systematic sampling scheme outlined in Algorithm 2
to sample a k-set. The overall prediction policy is
summarized in Algorithm 3.

Algorithm 3 k-sets via SAGE with πbase = Hedge
Input: w ← 1, learning rate η > 0.
1: for every time t do
2: wi ← wiexp(η1(yt−1 = i)),∀i ∈ [N ].

3: p(i)← w(i)ek−1(w−i)
ek(w) ,∀i ∈ [N ],

4: Sample a k-set with the marginal inclusion prob-
abilities p using Algorithm 2.

5: end for

4.1.1 Regret Bounds

Recall that, in expectation, the performance of Algo-
rithm 3 and the base policy Hedge are identical. It is
well-known that by adaptively tuning the learning rate
η, the Hedge policy with n experts admits the following
data-dependent small-loss regret bound (Koolen et al.,
2010; Erven et al., 2011)

RegretT ≤
√

2l∗T lnn+ lnn, (13)

where l∗T denotes the cumulative loss incurred by the
best fixed expert in hindsight for the given loss matrix.
In the case of the k-sets problem, the total number of
experts is given by n =

(
N
k

)
≤ (Nek )k. Hence, the SAGE

prediction framework with Hedge as the base policy
yields the following adaptive regret bound:

RegretT (y) ≤
√

2kl∗T (y) ln(Ne/k) + k ln(Ne/k), (14)

where l∗T (y) is the number of mistakes incurred by the
best fixed k-set in hindsight for the sequence y. Since
l∗T (y) ≤ T , the regret upper bound (14) is sublinear in
the horizon-length. However, the bound could be much
smaller if the offline oracle incurs a small number of
mistakes for a particular sequence.

Discussion: Algorithm 3 offers a new projection
and decomposition-free approach to break the exist-
ing O(N2) complexity barrier for the k-sets prob-
lem (Herbster and Warmuth, 2001). The work by
Uchiya et al. (2010) studies a bandit version of the
k-sets problem and proposes Exp3.M policy, which
incurs O(

√
kNT logN/k) regret. However, this bound

cannot be compared with our (smaller) regret bound,
applicable in the full-information setting. Furthermore,
they use dependent rounding method, which is more
complex than Madow’s sampling that we use here.

4.2 k-sets with FTRL

It is also possible to design efficient online policies for
the k-sets problem with a base policy other than
Hedge. In Section 11.3 of the supplementary, we
show how the standard Follow-the-Regularlized-Leader
(FTRL) framework can be augmented with the sys-
tematic sampling schemes to design an efficient on-
line prediction policy for a generalized version of the
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k-experts problem with the sum-reward function. A
drawback of the FTRL approach is that, unlike Hedge,
this policy does not admit an adaptive regret bound.
Due to space constraints, we defer the detailed discus-
sion to Section 11.3 of the supplementary material.

5 k-experts WITH Pairwise-rewards

In this section, we design an online prediction policy
for a special case of the k-experts problem with the
pairwise-reward function and binary rewards (see
Table 1)1. Recall that, in the k-sets problem, the
adversary chooses a single item at each round (so that
only one component of the reward vector rt is one and
the rest are zero). On the contrary, in this problem, the
adversary secretly selects a pair of items at each round
(so that exactly two components of the reward vector rt
are one and the rest are zero). If both the items chosen
by the adversary are included in the predicted k-set,
the learner receives a unit reward; else, it receives zero
rewards for that round. The following hardness result
is immediate.

Proposition 1 The offline version of the k-experts
problem with pairwise-rewards is NP-Hard.

Proof: The proof follows from a simple reduction of
the NP-Hard Densest k-subgraph problem (Sotirov,
2020) to the offline optimization problem. Consider an
arbitrary graph G onN vertices and T edges denoted by
e1, e2, . . . , eT . Construct an instance of the k-experts
problem with pairwise-rewards such that, at round t,
the adversary chooses the pair of items corresponding to
the vertices of the edge et, 1 ≤ t ≤ T. Then the problem
of finding a subgraph of k vertices such that the number
of edges in the induced subgraph is maximum (i.e., the
Densest k-subgraph of G) reduces to the offline problem
of selecting the most rewarding k items to maximize
the cumulative reward in the k-experts problem with
pairwise-rewards. �

In principle, we can use the SAGE framework to ob-
tain the optimal pairwise inclusion probabilities and
then sample k items accordingly. However, there are
two main difficulties with this approach - (1) unlike
Eqn. (2), there is no known succinct characterization
of the feasible set of pairwise inclusion probability vec-
tor when k items are chosen from N items without
replacement, and (2) given a feasible pairwise inclusion
probability vector, it is not known how to efficiently
sample k items accordingly. The above roadblocks are
not surprising given the hardness of the offline problem.
This prompts us to propose the following approximate
policy described in Algorithm 4.

1The general case with arbitrary rewards can be handled
using a similar FTRL approach as in Section 4.2.

Algorithm 4 Algorithm for pairwise-rewards
1: Treat each pair of items as a single super-item.
2: Use SAGE to sample k distinct super-items from(

N
2

)
super-items per round.

Since any particular item may be a part of k− 1 super-
items, it is possible that the set of sampled super-
items in Algorithm 4 includes an item multiple times.
However, it is easy to see that the number of items
contained in the union of any k super-items is bounded
between

√
2k and 2k. Hence, replacing N with

(
N
2

)
(the number of super-items) in Eqn. (14) yields the
following performance guarantee for Algorithm 4:

Offline oracle reward with at most
√

2k items - the
reward accrued by Algorithm 4 with at most 2k items
is upper bounded by:

2
√
kl∗T ln(N2e/2k) + 2k ln(N2e/2k),

where l∗T is the loss incurred by the optimal offline
oracle using 2k items. Algorithm 4 is an instance of
improper learning algorithm where the online policy
competes with a weaker oracle.

6 LEARNING POLICIES FOR
MONOTONE REWARDS

In this section, we use the SAGE framework to design an
efficient online policy to learn any smooth monotone
reward function. Recall that a set function f : 2[N ] → R
is monotone if f(S1) ≥ f(S2),∀S2 ⊆ S1 ⊆ [N ]. A set
function f is modular if for any subset S ⊆ [N ], we
have: f(S) =

∑
i∈S f({i}). Our starting point is the

following fundamental result, which approximates any
set function by modular functions.

Theorem 3 (Iyer and Bilmes (2012)) For a
given set X and any set function f : 2X → R
and any set Y ⊆ X, there are two modular func-
tions mu : 2X → R and ml : 2X → R such that
ml ≤ f ≤ mu and ml(Y ) = f(Y ) = mu(Y ). Fur-
thermore, the functions ml and mu can be expressed
explicitly in terms of the function f .

See Appendix 11.4 for the expressions of approximating
modular functions and other computational details.
We assume that the reward function ft, chosen by
the adversary at any round t ∈ [T ], is monotone with
ft(∅) = 0,∀t ∈ [T ]. We also assume that the reward
functions are “smooth”, i.e., there exists a finite constant
G such that ∀S ⊆ [N ], x ∈ [N ], we have:

|ft(S)− ft(S \ {x})| ≤ G, ∀t ≥ 1. (15)

In the k-experts setting, the online prediction policy
can select only a subset of k experts at each round.
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We consider an improper learning setup where our
objective is to design a prediction policy that attains
at least a k/N fraction of the total cumulative rewards
obtained by taking all N experts at each round up to an
O(
√
T ) term. Note that the comparator in this section

is different from that of the standard regret metric
(1), where the reward accrued by the online policy is
compared against the optimal k-set in hindsight.

Using Theorem 3, we can construct a modular set
function mt

l corresponding to the function ft such that:

ft ≥ mt
l , and ft([N ]) = mt

l([N ]). (16)

Consider a sum-reward variant of the k-sets problem,
where the reward gt(i) for the ith expert at round t
is set to be equal to mt

l({i}), i ∈ [N ]. We now use a
prediction policy that minimizes the static regret (1)
with respect to the linearized reward vectors {gt}t≥1:

RT = max
p∗∈∆k

N

∑
t≤T

〈gt, p∗〉 −
∑
t≤T

〈gt, pt〉.

From Eqn. (42) of the Supplementary, it follows that
the FTRL (η) policy with entropic regularizer guarantees
the following regret bound for the sum-reward problem:

RT ≤
k ln(N/k)

η
+ 2η

∑
t≤T

∥∥g2
t

∥∥
k,∞ ,

where
∥∥x2

∥∥
k,∞ denotes the sum of the k largest compo-

nents of the vector (x2
1, x

2
2, . . . , x

2
N ). Using the smooth-

ness assumption (15), we show in Appendix 11.4 that∥∥g2
t

∥∥
k,∞ ≤ B2, where B = O(GN2

√
k) for arbitrary

reward functions. We also show that the bound can be
improved to B = O(G

√
k) for submodular functions.

Hence, with the optimal tuning of the learning rate η,
the FTRL policy achieves the following regret bound:

RT ≤ 2B
√

2kT ln(N/k). (17)

Now observe that:

E[ft(St)] =
∑
St

pt(St)ft(St) ≥
∑
St

pt(St)m
t
l(St)

=

N∑
i=1

pt(i)gt(i) = 〈gt, pt〉. (18)

Furthermore, we also have:∑
t≤T

ft([N ])
(a)
=
∑
t≤T

N∑
i=1

gt(i) ≤
N

k
max
p∗∈∆k

N

∑
t≤T

〈gt, p∗〉,

(19)

where we have used Eqn. (16) in Eqn. (a). Substituting
the bounds from Eqn. (18) and (19) into the regret
bound (17) yields the following performance guarantee:

k

N

∑
t≤T

ft([N ])−
∑
t≤T

E[ft(St)] ≤ 2B
√

2kT ln(N/k).

Hence, for arbitrary monotone reward functions, the
prediction policy asymptotically achieves a k/N fraction
of the maximum possible cumulative reward.

7 LOWER BOUNDS

In this section, we lower bound the achievable regret for
different variants of the k-experts problem. To begin
with, consider the setting where the adversary chooses
binary rewards with exactly one non-zero reward per
round. In this setting, Bhattacharjee et al. (2020)
established the following regret lower bound for the
Sum-reward variant of the k-experts problem:

Theorem 4 (Regret Lower bound for Sum-reward)
For any online policy with N

k ≥ 2 and T ≥ 1, we have

RSum-reward
T ≥

√
kT

2π
−Θ(

1√
T

).

Note that with the above rewards structure,
the Sum-reward, the Max-reward, and the
Pairwise-reward variants of the k-experts problem
become identical. Hence, Theorem 4 also yields
a lower bound to all of the above variants of the
k-experts problem. However, from the standard
Hedge achievability bound applied to the meta-experts
(Eqn. (14)), it can be readily observed that the upper
and lower regret bounds differ by a logarithmic factor.
Our main result in this section is the following tight
regret lower bound for the Max-Reward variant of
the k-experts problem, that removes the above
logarithmic gap.

Theorem 5 (Regret Lower Bound for Max-reward)
For any online policy with T ≥ 16k ln(Nk ) and N

k ≥ 7,
we have

RMax-reward
T ≥ 0.02

√
kT ln

N

k
.

Compared to the standard lower bounds (Cesa-Bianchi
and Lugosi, 2006), a distinguishing feature of the above
regret lower bound is its non-asymptotic nature.

Proof outline: The proof utilizes the standard prob-
abilistic technique where the worst-case regret is lower
bounded by the average regret over an ensemble of
k-experts problems. However, the analysis becomes
complex as the reward accrued at each round t is a
non-linear function of the reward vector. To alleviate
this difficulty, we first partition the pool of N experts
into k disjoint subsets. Then we select the cumulative
best expert in hindsight from each subset in order to
lower bound the optimal offline reward. Please refer to
Section 11.5 in the supplementary material for detailed
proof.
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Figure 1: Comparison among different
k-set policies with k/N = 0.1, N ∼ 2400
for the MovieLens Dataset.
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Figure 2: Performance of the SAGE pol-
icy for pairwise predictions with k/N =
0.02 for the Reality Mining Dataset.
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Figure 3: Performance of SAGE for the
Max-Reward function, with k/N = 0.01
for the MovieLens Dataset.

8 NUMERICAL EXPERIMENTS

k-sets: 2 Assume that there is a collection of N
movies. The user may request any of the N movies at
each round. The learner sequentially predicts (possibly
randomly) a set of k movies that the user is likely to
watch at a given round. At each round, the learner
receives a unit reward if the movie chosen by the user
is in the predicted set; else, it receives zero rewards for
that round. The learner’s goal is to maximize the total
number of correct predictions over a given time interval.
In our experiments, we use the MovieLens 1M dataset
(Harper and Konstan, 2015) for generating the sequence
of movies chosen by the user. The dataset contains
T ∼ 105 ratings for N ∼ 2400 movies along with the
timestamps. We assume that a user rates a movie
immediately after watching it. The plot in Figure 1
compares the normalized regrets of the proposed SAGE
policy (with πbase = Hedge), the FTPL policy proposed
by Bhattacharjee et al. (2020), and two other baseline
prediction policies - LFU and LRU, which treat the
prediction problem as a paging problem (Geulen et al.,
2010). From the plot, it is clear that the SAGE policy
decisively outperforms all other policies.

k-experts with Pairwise-reward: In our next ex-
periment, we use the MIT Reality Mining dataset (Ea-
gle and Pentland, 2006) to understand the efficacy of
the prediction policy for pairwise rewards proposed
in Section 5. The dataset contains timestamped hu-
man contact data among 100 MIT students collected
using standard Bluetooth-enabled mobile phones over
9 months. In our experiments, we consider a subset
of N = 20 students with

(
20
2

)
= 190 potential contact

pairs. The learner’s task is to predict a sequence of
k-sets that include both the students involved in the
contact for each timestamp. As described in Section 5,

2All codes used in the experiments are available at:
https://github.com/sourav22899/k-sets-problem.

we design an approximate prediction policy by consid-
ering each pair of students as a super-item and use the
SAGE framework with πbase = FTRL. The normalized
regret achieved by this policy is shown in Figure 2. To
compute the optimal static offline reward, we used a
brute-force search. From the plots, we see that the
normalized regret of this policy approaches zero for
long-enough time-horizon.

k-experts with Max-reward: In our final experi-
ment, we use a subset of the MovieLens dataset with
T ∼ 7000 ratings for N = 200 movies. We assume that
the movies are sorted according to genres so that if the
movie i is chosen by the user at each round, the learner
receives a reward of maxj∈S

(
1− 1

N |j − i|
)
for predict-

ing the set S. This reward function roughly emulates
the practical requirement that if the requested movie is
not in the predicted set, then it is preferable to recom-
mend a similar movie than a completely different one.
In Figure 3, we plot the normalized regret of the SAGE
policy with πbase = FTRL, along with the lower bound
given in Theorem 5. From the plot, we can see that the
normalized regret shows a downward trend with T even
with the FTRL policy, albeit there is a non-trivial gap
with the lower bound. This gap is expected as the FTRL
policy is optimal for the Sum-reward function, but not
necessarily so for the Max-reward function. Please see
Section 12 of the supplement for additional results.

9 CONCLUSION

In this paper, we formulated the k-experts problem
and designed efficient learning policies for some of its
variants using the SAGE framework. We also derived a
tight regret lower bound for the Max-reward variant
and characterized the set of all mistake bounds for
the k-sets problem achievable by online policies. In
the future, it would be interesting to benchmark the
performance of the algorithms on larger datasets.

https://github.com/sourav22899/k-sets-problem
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Supplementary Material:
k-experts - Online Policies and Fundamental Limits

11 Proofs and Derivations

11.1 Proof of Theorem 2

Phase-I: Computation of the Marginal Inclusion Probabilities pt : Similar to the treatment in Rakhlin
and Sridharan (2016), we use a potential function-based argument to derive a set of marginal inclusion probabilities
at each time t that leads to the loss function φ(·). Let {φt : [N ]t → [0, 1]}Tt=0 be a sequence of potential functions
satisfying the boundary condition

φT (y) = φ(y). (20)

We define φ0 to be a suitable constant. In order to achieve the loss function φ(·), we require the following equality
to be valid for all sequences y ∈ [N ]T :

E
(

1

T

T∑
t=1

1(yt /∈ St)
)

=

T∑
t=1

(
φt(y

t)− φt−1(yt−1)
)

+ φ0, (21)

where the above equation follows from telescoping the summation and using the boundary condition (20). For a
given initial segment of the sequence yt−1, consider an online policy that includes the ith element in the predicted
set St with the conditional probability pti(yt−1). Clearly

P(yt /∈ St|yt−1) = 1−
N∑
i=1

pti(y
t−1)1(yt = i). (22)

Hence, combining equations (21) and (22), the achievability is ensured if we can exhibit a sequence of potential
functions {φt(·)} and a randomized online strategy for selecting the sets St, such that the following equality holds
for every sequence y ∈ [N ]T :

T∑
t=1

(
−

N∑
i=1

pti(y
t−1)1(yt = i)

T
+ φt−1(yt−1)− φt(yt) +

1

T
(1− φ0)

)
= 0. (23)

We now consider the following candidate sequence of potential functions:

φt(yt) ≡ Eφ(yt, ε
T
t+1), ∀t, (24)

where the expectation is taken over a random sequence εTt+1 such that each component εj , t + 1 ≤ j ≤ N is
distributed i.i.d. uniformly over the set [N ]. It is easy to see that, the boundary condition (20) is satisfied.
Furthermore, from the condition given in the statement of the theorem, we have φ0 = Eφ(εT1 ) = 1− k/N. Next,
we exhibit a prediction strategy with inclusion probabilities {pti(yt−1)} such that the equation (23) is satisfied.
For, this, we set each of the terms of the equation (23) identically to zero for any sequence y ∈ [N ]T . This yields
the following conditional inclusion probability of the ith element for any initial segment of the request sequence
yt−1 ∈ [N ]t−1 :

pti(y
t−1) = T

(
φt−1(yt−1)− φt(yt−1i)

)
+
k

N
, ∀i ∈ [N ]. (25)

From the definition (24), we have that 1
N

∑N
i=1 φt(y

t−1i) = φt−1(yt−1). Hence, summing equation (25) over all
i ∈ [N ], we have

N∑
i=1

pti(y
t−1) = k.
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Thus, the scalars {pti}Ni=1 satisfy the requirement in equation (2). Hence, to guarantee that Eqn. (25) yields a
valid prediction strategy, we only need to ensure that 0 ≤ pti ≤ 1,∀i ∈ [N ]. In the following, we show that this
requirement is also satisfied, thanks to the stability property of the loss function φ(·). For this, we are required to
ensure the following bound for all yt−1 :

− k

N
≤ T

(
1

N

N∑
i=1

φt(y
t−1i)− φt(yt−1i)

)
≤ 1− k

N
. (26)

It immediately follows that the stability conditions, given by equations (6) and (7), are sufficient to ensure the
bound in Eqn. (26).

Phase-II: Sampling the Predicted set We use the conditional marginal inclusion probabilities pt, derived
in Eqn. (25), to construct a consistent randomized output set St with |St| = k. Since the inclusion probabilities
satisfy the feasibility constraints, we can use the Algorithm 2 to construct the predicted set. Phase-I and Phase-II,
taken together, complete the proof of the theorem.

11.2 Iterative evaluation of the marginal inclusion probabilities

At any time t, consider the formal power series gt(X) defined as

gt(X) =
∏
i∈[N ]

(X − wt(i)) =

N∑
j=0

atjX
j , (27)

i.e., ∀j = 0, · · · , N, atj is the coefficient of Xj in the expansion of gt(X). Then, by Vieta’s formulae, we obtain,

∑
1≤i1<i2<···<ik≤N

k∏
j=1

wt(ij) = (−1)kat,N−k

⇐⇒
∑

S′⊂[N ]:|S′|=k

wt(S
′) = (−1)kat,N−k. (28)

Now define

gti(X) =
gt(X)

X − wt(i)
=

N−1∑
j=0

b
(i)
tj X

j , (29)

where b(i)tj is the coefficient of Xj in the expansion of gti(X). Again using Vieta’s formula, it follows that,∑
S⊂[N ]\{i}:|S|=k−1

wt(S) = (−1)k−1b
(i)
t,N−k. (30)

Therefore, it follows that the probability selection rule (10) can be expressed as below:

pt(i) = −
wt−1(i)b

(i)
t−1,N−k

at−1,N−k
, ∀i ∈ [N ]. (31)

It now remains to find a computationally efficient way of updating the coefficients atj , b
(i)
tj . To this direction,

given the coefficients {atj}Nj=0, we compute the coefficients {btj}N−1
j=0 in the following way. Using the formal power

series expansion (1−X)−1 =
∑
l≥0X

l, one can write,

gti(X) = −w−1
t (i)gt(X)

∑
l≥0

X lw−lt (i)

= −w−1
t (i)

N∑
j=0

∞∑
l=0

atjw
−l
t (i)Xj+l. (32)
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Therefore, ∀0 ≤ j ≤ N − 1,

b
(i)
tj = −

j∑
l=0

atlw
−(j−l+1)
t (i) (33)

Consequently, we can further express the probability selection rule from Eq. (31) as

pt(i) =

∑N−k
j=0 at−1,jw

−(N−k−j)
t−1 (i)

at−1,N−k
. (34)

We now proceed to find update rule for the coefficients atj . Let ft be the file requested at time t. Then,
Rt(ft) = Rt−1(ft) + ρt, where ρt = 1(ft ∈ St), whereas, Rt(i) = Rt−1(i) if i 6= ft. Therefore,

gt(X) =

N∏
i=1

(X − wt(i)) = gt−1(X) · X − wt(ft)
X − wt−1(ft)

= gt−1,ft(X)(X − wt(ft)) =

N−1∑
j=0

b
(ft)
t−1,jX

j(X − wt(ft)). (35)

Therefore, using the above and the update rule of b(i)tj from Eq. (33), we obtain,

atj = b
(ft)
t−1,j−1 − wt(ft)b

(ft)
t−1,j

= wt(ft)

j∑
k=0

at−1,kw
−(j−k+1)
t−1 (ft)−

j−1∑
k=0

at−1,kw
−(j−k)
t−1 (ft)

= (eη − 1)

j∑
k=0

at−1,kw
−(j−k)
t−1 (ft) + at−1,j , (36)

where in the last step we have used the fact that wt(ft)w−1
t−1(ft) = eη, since ft is the requested file at time t and

hence Rt(ft) = Rt−1(ft) + 1. The update Eq. (36) can be used to obtain a further simplified recurrence to the
update of the coefficients at,i as below:

at,j = (eη − 1)w−1
t−1(ft)

j−1∑
k=0

at−1,kw
−(j−1−k)
t−1 (ft) + eηat−1,j ,

= w−1
t−1(ft)

(
at,j−1 − at−1,j−1

)
+ eηat−1,j , ∀1 ≤ j ≤ N, (37)

at,0 = eηat−1,0. (38)

Using the update equations of {atj}Nj=1 and {pt(j)} from Eqs. (37), (38) and (34) respectively, we have the
following iterative numerical procedure for computing the marginal inclusion probabilities:

11.3 Generalized k-sets with FTRL

In this section, we design an efficient online policy for a generalized version of the k-sets problem where the
reward per round is modulated using a non-decreasing concave function ψ : R≥0 → R, called the link function.
In particular, the reward of the learner at round t is defined to be ψ(rt · pt). In the special case when ψ(·) is
the identity function, we recover the standard k-sets problem. The notion of link functions is common in the
literature on Generalized Linear Models (Filippi et al., 2010; Li et al., 2017). Note that, although the reward
function could be non-linear, it still depends only on the marginal inclusion probabilities of the elements, and
hence the SAGE framework applies. Formally, the objective of the learner is to design an efficient online learning
policy to minimize the static regret with respect to an offline oracle (the best fixed k-set in the hindsight), i.e.,

RT := max
p∗∈∆(CNk )

T∑
t=1

ψ(rt · p∗)−
T∑
t=1

ψ(rt · pt), (39)
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Algorithm 5 Iterative Computation of the Marginal Inclusion Probabilities
Input: Learning rate η > 0,
Initialize: R0 = 0, a0,j = (−1)N−j

(
N
j

)
, ∀0 ≤ j ≤ N .

1: for t = 1, · · · , T do

2: Compute wt−1(i) = exp(ηRt−1(i)) ∀i ∈ [N ], and set pt(i) =
∑N−k

j=0 at−1,N−k−jw
−j
t−1(i)

at−1,N−k
, ∀i ∈ [N ].

3: Sample a set St ⊂ [N ] with |St| = k according to Madow’s systematic sampling using the probabilities
{pt(i)}i∈[N ] and construct the vector yt ∈ {0, 1}N , such that yt,i = 1(i ∈ St).

4: Observe the requested file index ft and update

Rt(i)← Rt−1(i) + 1(ft = i).

5: Update

at,0 ← eηat−1,0

at,j ← w−1
t−1(ft)

(
at,j−1 − at−1,j−1

)
+ eηat−1,j , 1 ≤ j ≤ N.

6: end for

We augment the well-known Follow-the-Regularized-Leader (FTRL) framework with the Systematic Sampling
scheme in Algorithm 2 to design an efficient online policy for the generalized k-sets problem with a sublinear
regret. Interestingly, we will see that, when specialized to the k-sets problem, the FTRL-based approach yields
a different policy from the Hedge-based Algorithm 3. The problem of finding the optimal marginal inclusion
probabilities to minimize the regret in Eqn. (39) is an instance of the Online Convex Optimization (OCO)
problem (Hazan, 2019). We use the standard Follow-the-Regularized-Leader (FTRL) paradigm to design an
online prediction policy with sublinear regret. We refer the reader to Hazan (2019) for an excellent introduction
to the OCO framework in general, and the FTRL policy in particular.

Recall that, in the general FTRL paradigm, the learner’s action at time t is obtained by maximizing the sum of
the cumulative rewards (or a linear lower bound to it) upto time t−1 and a strongly concave regularizer g : Ω→ R,
where Ω is the set of all feasible actions of the learner. For the Generalized k-sets problem, the vector of
marginal inclusion probabilities is constrained to be in the set Ω = ∆N

k , where ∆N
k = {p ∈ [0, 1]N :

∑N
i=1 pi = k.}

In the following, we choose the usual (Shannon) entropic regularizer as our regularization function, i.e., we take
g(p) = −∑N

i=1 pi ln pi. This choice is motivated by the well-known fact that the entropic regularization yields
the Hedge policy for the Experts problem (where k = 1) (Hazan, 2019). In our numerical experiments, we also
investigate the performance of the Rényi and Tsallis entropic regularizers of various orders (Amigó et al., 2018).
Choosing the entropic regularizer leads to the following convex program for determining the marginal inclusion
probabilities pt at the tth round:

pt = arg max
p∈∆N

k

[( t−1∑
s=1

∇s)Tp−
1

η

N∑
i=1

pi ln pi,

]
(40)

where ∇s,i ≡ rs,iψ′(rTs ps) denotes the ith component of the gradient vector. Using convex duality, the optimal
solution to (40) may be quickly determined in Õ(N) time as shown in Algorithm 6 below.

See Section 11.3.1 below for the derivation of the Algorithm 6. Interestingly, although for k = 1, the Algorithm 6
is identical to 3, for k > 1, the algorithms are quite different. The regret guarantee for the FTRL policy (40)
for the Generalized k-sets problem follows immediately from the standard results on the regret bound for the
FTRL policy for general OCO problems. The simplified regret bound is given in the following theorem.

Theorem 6 (Regret Bound) With the learning rate η > 0, the FTRL policy for the generalized k-sets
problem with the entropic regularizer ensures that

RegretT ≤
k lnN/k

η
+ 2η

T∑
t=1

||∇2
t ||k,∞,
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Algorithm 6 FTRL for the generalized k-sets problem with the entropic regularizer
Input: R← 0, learning rate η > 0
1: for every time step t: do
2: R← R+∇t−1.
3: Sort the components of the vector R in non-increasing order. Let R(j) denote the jth component of the

sorted vector j ∈ [N ].

4: Find the largest index i∗ ∈ [N ] such that (k − i∗)exp(ηR(i∗)) ≥
∑N
j=i∗+1 exp(ηR(j)).

5: Compute the marginal inclusion probabilities as pi = min(1,Kexp(ηRi)), where K ≡ k−i∗∑N
j=i∗+1 exp(ηR(j))

.

6: Using Algorithm 2, sample a k-set with the marginal inclusion probabilities p.
7: end for

where ||∇2
t,i||k,∞ denotes the sum of the k largest components of the vector ∇2

t , which is obtained by squaring the
vector ∇t component wise.

Proof: Recall the following general regret bound for the FTRL policy from Theorem 5.2 of Hazan (2019).
For a bounded, convex and closed set Ω and a strongly convex regularization function g : Ω→ R, consider the
standard FTRL updates, i.e.,

xt+1 = arg max
x∈Ω

[( t∑
s=1

∇Ts
)
x− 1

η
g(x),

]
(41)

where ∇s = ∇ft(xs),∀s. Then, as shown in Hazan (2019), the regret of the FTRL policy can be bounded as
follows:

RegretFTRL
T ≤ 2η

T∑
t=1

||∇t||2∗,t +
g(u)− g(x1)

η
, (42)

where the quantity ||∇t||2∗,t denotes the square of the dual norm of of the vector induced by the Hessian of the
regularizer evaluated at some point xt+1/2 lying in the line segment connecting the points xt and xt+1. In the
Generalized k-set problem, the Hessian of the entropic regularizer is given by the following diagonal matrix

∇2g(pt+1/2) = diag([p−1
1 , p−1

2 , . . . , p−1
N ]).

For a vector v, let ||v||k,∞ denote the sum of its k largest components. With this notation, we can write

||∇t||2∗,t =

N∑
i=1

pi∇2
t,i ≤ ||∇2

t ||k,∞,

where we have used the fact that 0 ≤ pi ≤ 1 and
∑
i pi = k. In the above, the vector ∇2

t is obtained by squaring
each of the components of the vector ∇t.
To bound the second term in (42), define a probability distribution p̃ = p/k. We have

0 ≥ g(p) =
∑
i

pilogpi = −k
∑
i

p̃ilog
1

pi

(Jensen’s inequality)
≥ −klog

∑
i

p̃i
pi

= −klog
N

k
.

Hence, the regret bound in (42) can be simplified as follows:

Regretk-set
T ≤ k

η
log

N

k
+ 2η

T∑
t=1

||∇2
t ||k,∞.

�
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11.3.1 Derivation of Algorithm 6

Recall that, via Pinsker’s inequality (Fedotov et al., 2003), the entropic regularizer is strongly concave with
respect to the `1 norm. Thus, strong duality holds and the optimal solution to the problem (40) can be obtained
by using the KKT conditions (Boyd and Vandenberghe, 2004). To simplify the notations, denote the cumulative
sum of the gradient vectors

∑t−1
s=1∇s by the vector Rt−1. Thus, the problem (40) may be explicitly rewritten as

follows:

max

N∑
i=1

piRt−1,i −
1

η

N∑
i=1

pi ln pi

subject to,

N∑
i=1

pi = k (43)

pi ≤ 1, ∀i (44)
pi ≥ 0, ∀i. (45)

By associating the real variable λ with the constraint (43) and the non-negative dual variable νi with the ith
constraint in (44), we construct the following Lagrangian function:

L(p, λ,ν) =
∑
i

(
piRt−1,i −

1

η
pi ln pi − λpi − νipi

)
(46)

For a set of dual variables (λ,ν), we set the gradient of L w.r.t. the primal variables p to zero to obtain:

pi = exp(ηRt−1,i)exp(λη − ηνi − 1)

= Kexp(ηRt−1,i)ζi,

where K ≡ exp(λη − 1) ≥ 0 and ζi ≡ exp(−ηνi) ≤ 1. Let us fix the constant K. To ensure the complementary
slackness condition corresponding to the constraint (44), we choose the dual variable νi ≥ 0 such that pi =
min(1,Kexp(ηRt−1,i)),∀i. Finally, we determine the constant K from the equality constraint (43):

N∑
i=1

min(1,Kexp(ηRt−1,i)) = k. (47)

For any k < N , we now argue that the equation (47) has a unique solution for K > 0. The LHS of the equation
(47) is a continuous, non-decreasing function of K and takes value in the interval [0, N ]. Hence, by the intermediate
value theorem, the equation (47) has at least one solution. Furthermore, at the equality, at least one of the
constituent terms will be strictly smaller than one. Since this term is strictly increasing with K, the proposition
follows.
To efficiently solve the equation (47), we sort the cumulative request vector Rt−1 in non-increasing order. Let
Rt−1,(i) denote the ith term of the sorted vector. Let i∗ be the largest index for which Kexp(ηRt−1,(i∗)) ≥ 1.
Then, the equation (47) can be written as:

i∗ +K

N∑
j=i∗+1

exp(ηRt−1,(j)) = k.

i.e.,

K =
k − i∗∑N

j=i∗+1 exp(ηRt−1,(j))
. (48)

where i∗ is the largest index to satisfy the following constraint:

(k − i∗)exp(ηRt−1,(i∗)) ≥
N∑

j=i∗+1

exp(ηRt−1,(j)). (49)
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Hence, the optimal index i∗ may be determined in linear time by starting with i∗ = N and decreasing the index i∗
by one until the condition (49) is satisfied. Once the optimal i∗ is found, the optimal value of the constant K may
be obtained from equation (48). The overall complexity of the procedure is dominated by the sorting step and is
equal to O(N lnN). However, since only one index changes at a time, in practice, the average computational cost
is much less.

11.4 Approximating arbitrary Set functions by Modular functions

For completeness, here we outline the main steps involved for proving Theorem 3 (see also Wu et al. (2019) for an
exposition).

Theorem 7 (Sandwich Theorem, Iyer and Bilmes (2012)) For a given set X and any set function f :
2X → R and any set Y ⊆ X, there are two modular functions mu : 2X → R and ml : 2X → R such that
ml ≤ f ≤ mu and ml(Y ) = f(Y ) = mu(Y ). Furthermore, the functions mu and ml can be explicitly expressed in
terms of the function f .

The above Sandwich theorem is a consequence of a series of results that we briefly describe below. Recall that a
set function f : 2X → R is called submodular if for all A,B ⊆ 2X , we have

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).

The following two lemmas approximate any submodular function by modular functions. For any two sets
A,B ⊂ 2X , define f(A|B) := f(A ∪B)− f(B).

Lemma 1 (Upper bound (Iyer and Bilmes, 2012)) For any submodular function f : 2X → R, and Y ⊆ X,
there exists a modular function mu(A) such that mu ≥ f and mu(Y ) = f(Y ). One such candidate modular
function mu is given as follows:

mu(A) = f(Y ) +
∑

j∈A\Y

f(j|∅)−
∑

j∈Y \A

f(j|Y \ j). (50)

Lemma 2 (Lower bound (Iyer and Bilmes, 2012)) For any submodular function f : 2X → R, and Y ⊆ X,
there exists a modular function ml(A) such that ml ≤ f and ml(Y ) = f(Y ). One such candidate modular function
ml is given as follows:
Define any permutation (ordering) of the elements of X = {x1, x2, . . . , x|X|}. Subsequently define Y =
{x1, x2, . . . , x|Y |} and sets Si = {x1, x2, . . . , xi}. Define ml(∅) = f(∅). Then, for ∅ 6= A ⊆ X,

ml(A) = ml(∅) +
∑
xi∈A

(f(Si)− f(Si−1)). (51)

Finally, the following result shows that any arbitrary set function can be expressed as the difference of two
submodular functions.

Lemma 3 (Difference of Submodular functions (Narasimhan and Bilmes, 2012)) Every set function
f : 2X → R can be expressed as the difference of two monotone nondecreasing submodular functions g and h, i.e.,
f = g − h.

Iyer and Bilmes (2012) gives an exact characterization of the functions g and h as follows: let h be any strictly
submodular function. Compute

β = min
Y⊂Z⊆X\j

(
h(j|Y )− h(j|Z)

)
. (52)

For example, by taking h(Y ) :=
√
|Y |, we have β = 2

√
N − 1 −

√
N −

√
N − 2 = O( 1

N3/2 ), where N = |X|.
Similarly, define

α(f) = min
Y⊂Z⊆X\j

(
f(j|Y )− f(j|Z)

)
. (53)
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By definition α ≥ 0 ⇐⇒ f is submodular. In that case, we can take g = f, h = 0 and we are done. In case α < 0,
consider any α′ ≤ α. Then, Iyer and Bilmes (2012) showed that the function f can be expressed as f = ĝ − ĥ
where

ĝ = f +
|α′|
β
h, and ĥ =

|α′|
β
h, (54)

where ĝ and ĥ can be easily seen to be submodular.

Note that computing the parameter α(f) for any arbitrary set function f could be intractable (Iyer and Bilmes,
2012). However, we can readily obtain a lower bound α′ to α for monotone reward functions. We have

α = min
Y⊂Z⊆X\j

f(j|Y )− f(j|Z)

≥ min
Y⊆X

f(j|Y )− max
Z⊆X

f(j|Z)

(a)

≥ −max
Z⊆X

f(j|Z) =: α′,

where the inequality (a) follows from the monotonicity of the function f . In other words, |α′| is largest marginal
gain of adding an element to any set Z ⊆ X for the function f . To proceed further, we assume the function f to
be smooth, i.e., ∀S ⊆ [N ], x ∈ S, one has:

|f(S)− f(S \ {x})| ≤ G, (55)

for some finite constant G. Under the smoothness assumption, we can set |α′| = G. Combining Lemma 1, Lemma 2,
and Lemma 3, we can now explicitly write down the expressions for the modular functions ml and mu appearing
on Theorem 3 as follows:

ml = mg
l −mh

u (56)

mu = mg
u −mh

l . (57)

In the following, we derive an explicit expression for each components of the modular function ml.

Expression for the function ml: For a given ordering π of the elements, let σ(i) ≡ π−1(i) denote the position
of the element i in the ordering. Setting Y = [N ] and choosing h(S) =

√
|S| in Lemma 1 and Lemma 2, we have

the following expression for the function ml:

mĝ
l (i) = ĝ(Sσ(i))− ĝ(Sσ(i)−1)

= f(Sσ(i))− f(Sσ(i)−1) +
|α′|
β

(
h(Sσ(i))− h(Sσ(i)−1)

)
= f(Sσ(i))− f(Sσ(i)−1) +

|α′|
β

(√
|Sσ(i)| −

√
|Sσ(i)−1|

)
Furthermore, we have

mĥ
u(i) =

|α′|
β

h([N ]) +
∑

j∈i\[N ]

h(j|∅)−
∑

j∈[N ]\i

h(j|[N ] \ j)


=
|α′|
β

h([N ])−
∑

j∈[N ]\i

h(j|[N ] \ j)


=
|α′|
β

(√
N − (N − 1)(

√
N −

√
N − 1)

)
=: C

Hence, the ith component of the function ml is given by:

g(i) ≡ ml(i)

= mĝ
l (i)−mĥ

u(i)

= f(Sσ(i))− f(Sσ(i)−1) +
|α′|
β

(√
|Sσ(i)| −

√
|Sσ(i)−1|

)
− C. (58)
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Eqn. (58) gives an explicit and efficiently computable expression for the lower modular function ml which we use
in our online learning policy. Now notice that

√
N − (N − 1)(

√
N −

√
N − 1) =

√
N

(
1− (N − 1)

(
1−

√
1− 1

N

))

≈
√
N

(
1− N − 1

2N

)
= O(

√
N)

Hence, C = |α′|
β (
√
n− (N − 1)(

√
N −

√
N − 1)) = O(FN2) Using triangle inequality,

|g(i)| ≤ |f(Sσ(i))− f(Sσ(i)−1)|+ |α
′|
β

∣∣∣√|Sσ(i)| −
√
|Sσ(i)−1|

∣∣∣+ |C|
(a)

≤ G+
G

β
+ |C| = O(GN2) (59)

where (a) holds because by assumption f is smooth with parameter G, β ∼ O(1/N3/2), |α′| ≤ G. Hence, the sum
of the largest k components of the vector (g2

1 , g
2
2 , . . . , g

2
N ) can be bounded by:

||g2||k,∞ ≤ O((
√
kGN2)2).

Note that the upper bound in Eq. (59) holds for any set function f. As shown below, the above bound can be
improved in the special case when the function f is known to be submodular.

Special Case - Submodular f : As discussed above, if the function f is restricted to be submodular, we can
directly use Lemma 2 to obtain an expression for the modular function ml as follows: Fix any permutation of the
elements of [N ].

g(i) = ml(i) = f(Sσ(i))− f(Sσ(i)−1).

This gives the following bound |g(i)| ≤ G,∀i ∈ [N ]. Hence, proceeding as above, we have:

||g2||k,∞ ≤ O((
√
kG)2).

11.5 Proof of Theorem 5

Outline: We seek to obtain a tight lower bound to the regret of the k-experts problem with the Max-reward
variant. Before we delve into the technical details, we first outline the main steps behind the proof. We define
an i.i.d. reward structure where the reward of any expert at each slot is distributed as i.i.d. Bernoulli with
parameter p = 1/2k. Next, we compute a lower bound to the expected cumulative reward accrued by the static
offline oracle policy by constructing a set S∗ consisting of k experts, as outlined next. First, we divide the set of
N experts into k disjoint partitions, each consisting of Nk experts 3. Denote the set of experts in the ith partition
by Pi, 1 ≤ i ≤ k. Let e∗i ∈ Pi be the expert from the ith having the highest cumulative reward up to time T
in hindsight. Finally, we define the set S∗ ≡ {e∗i , 1 ≤ i ≤ k}. Trivially, the cumulative reward accrued by the
optimal offline oracle is lower bounded the reward accrued by the set of experts in S∗. Furthermore, since the
experts e∗i , 1 ≤ i ≤ k are identically distributed and independent of each other, the computation of the reward
accrued by the set S∗ becomes tractable. In the following, we show that the expected reward accumulated by the
set S∗ is given by the expectation of the maximum of k i.i.d. Binomial random variables. The regret lower bound
in Theorem 5 finally follows from a tight non-asymptotic lower bound to this expectation, which we believe, has
not appeared in this form before.

Proof: We use the standard “randomization trick” to obtain a lower bound to the worst-case regret:

max
{rt}Tt=1

RT ≥ Er
(
RT
)
, (60)

3For ease of typing, we assume that the number of experts N is divisible by k. If that is not the case, consider the first
Ñ = kbN

k
c experts only.
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where we use the symbol Er to convey that the expectation is taken over a random binary input reward sequence
{rt,i}i∈[N ],1≤t≤T , where the random rewards rt,i’s are taken to be i.i.d. ∼ Bern(p), for some parameter p ∈ [0, 1],
that will be fixed later. Using the definition of the regret in Eq. (1), we obtain:

max
{rt}Tt=1

RT ≥ OPT−
T∑
t=1

Er
(
max
i∈St

rt,i
)
, (61)

where we denote

OPT = Er
(

max
S⊂[N ]:|S|=k

T∑
t=1

max
i∈S

rt,i
)
. (62)

Since the rewards rt,i, i ∈ [N ] are i.i.d.∼ Bern(p), for any choice of the set St, we have:

Er
(

max
i∈St

rt,i
)

= P
(

max
i∈St

rt,i = 1
)

= 1− (1− p)k. (63)

It now remains to establish a lower bound to the quantity OPT. In order to do that, we first make the trivial
observation that, for any subset S ⊆ [N ] with cardinality k, the following holds true:

OPT ≥
T∑
t=1

E
(

max
i∈S

rt,i
)
. (64)

Note that in the above, we can allow random S, that might depend on the particular realizations of the random
reward sequence. Using this observation, we now use the bound (64) with the set S? as defined below: Divide the
set N experts into k disjoint partitions B1, · · · , Bk, each of size b = N/k, such that

Bl = {(l − 1)b+ 1, · · · , lb}, 1 ≤ l ≤ k. (65)

Finally, we construct the set S? ≡ {i1, · · · , ik}, where, il = arg maxj∈Bl
XT,j , 1 ≤ l ≤ k, where XT,j =

∑T
t=1 rt,j .

In other words, il is the (random) index of the expert in the lth partition such that it has the highest cumulative
reward in hindsight. By construction, the random indices i1, · · · ik are independent of each other. Hence, the
random rewards rt,i, i ∈ S? are independent Bernoulli random variables with some parameter q, that we will
determine shortly. Using the observation that for a fixed 1 ≤ l ≤ k, the random variables rt,il for t = 1, · · · , T ,
are identically distributed, it follows that E(rt,il) is identical for all t for a fixed l, so that

q ≡ E(rt,il) =
1

T
E(XT,il) =

1

T
E(max

j∈Bl

XT,j). (66)

Hence, using the lower bound (64), we have

OPT ≥
T∑
t=1

(
1− (1− q)k

)
= T (1− (1− q)k). (67)

Hence, combining Eqns. (61), (63) with the lower bound in Eqn. (67), we have the following regret lower bound
in terms of the yet undetermined parameter q:

max
{rt}Tt=1

RT ≥ T
(
(1− p)k − (1− q)k

)
. (68)

Since the function (1− p)k is convex in p, linearizing the function around the point q yields the following lower
bound for regret:

max
{rt}Tt=1

RT ≥ kT (q − p)(1− q)k−1. (69)

To proceed further, we need to estimate q by finding tight upper and lower bounds for it.
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1. Upper bounding q: Since the random variables XT,j , j ∈ B1 are i.i.d. Binomial, and hence subGaussian
with mean µ = EXT,1 = Tp and variance σ2 = Tp(1− p), it follows from Massart’s maximal lemma for Gaussians
(Massart, 2007) that:

q − p =
1

T

(
E(max
j∈B1

XT,j)− pT
)

≤
√

2p(1− p) ln(N/k)

T
.

In particular, for a large enough horizon-length T ≥ 8( 1
p − 1) ln(Nk ), from the above we have the following upper

bound for q:

q ≤ 3p

2
. (70)

2. Lower bounding q: We have

q − p =
1

T
E
(

max
j∈B1

(XT,j − Tp)
)

=
1

T
E
(

max
j∈B1

(XT,j − Tp)1
(

max
j∈B1

XT,j < Tp
))

+
1

T
E
(

max
j∈B1

(XT,j − Tp)1
(

max
j∈B1

XT,j ≥ Tp
))

(def.)
=

I1 + I2
T

. (71)

Now, we separately lower bound each of the quantities I1 and I2 as defined above.

2.1. Lower bounding I1: We have the following inequalities:

I1 ≡ E
(

max
j∈B1

(XT,j − Tp)1
(

max
j∈B1

XT,j < Tp
))

(a)

≥ max
j∈B1

E
(

(XT,j − Tp)1(XT,j < Tp)
∏

i∈B1,i6=j

1(XT,i < Tp)

)
(b)
= E

(
(XT,1 − Tp)1(XT,1 < Tp)

)(
P(XT,1 < Tp)

)b−1

(c)

≥ −E
∣∣XT,1 − Tp

∣∣(P(XT,1 < Tp)

)b−1

(d)

≥ −
√
Tp(1− p)

(
P(XT,1 < Tp)

)b−1

(e)

≥ −
(3

4

)b−1√
Tp(1− p). (72)

in the above,

1. inequality (a) follows from Jensen’s inequality and the trivial fact that 1(maxj∈B1
XT,j < Tp) = 1(XT,j <

Tp)
∏
i∈B1,i6=j 1(XT,i < Tp)

2. inequality (b) follows from the fact that the collection of r.v.s {XT,j , j ∈ B1} are independent and identically
distributed

3. inequality (c) follows from the fact that (XT,1 − Tp)1(XT,1 < Tp) ≥ −
∣∣XT,1 − Tp

∣∣,
4. in inequality (d), we have used Jensen’s inequality with the fact that XT,1 ∼ Binomial(T, p)

5. finally, in inequality (e), we have used Theorem 1 from Greenberg and Mohri (2014) which states that for
p > 1/T we have P(XT,1 ≥ Tp) ≥ 1/4.
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2.2. Lower bounding I2: Using Markov’s inequality, we have for any s ≥ 0 :

I2 ≥ sP
(

max
j∈B1

XT,j > s+ Tp
)

(a)
= s

(
1−

(
P
(
XT,1 ≤ s+ Tp

))b)
(b)

≥ s

(
1−

(
Φ(

s√
Tp(1− p)

)
)b)

. (73)

where in step (a), we have used the independence of the r.v.s XT,j , j ∈ B1 and in step (b), we have used Slud’s
inequality (Cesa-Bianchi and Lugosi, 2006). Note that in the above, we use the standard notation where Φ(·)
denotes the CDF of the standard Normal variable.

Observe that for any u > 0, we can upper bound the normal CDF as:

Φ(u) = 1− 1√
2π

∫ ∞
u

e−x
2/2dx

≤ 1− 1√
2π

∫ 2u

u

e−x
2/2dx

≤ 1− ue−2u2

√
2π

. (74)

By making a change of variable u← s√
Tp(1−p)

in Eqn. (73), the quantity I2 can be lower bounded as:

I2 ≥
√
Tp(1− p)

[
u

(
1−

(
1− ue−2u2

√
2π

)b)]
. (75)

Choosing u =
√

ln b
2 and using the standard inequality 1− x ≤ e−x,∀x, from the above we have:

I2 ≥ c1
√
Tp(1− p) ln b, (76)

where c1 ≡ 1√
2
(1− e−

√
ln b/4π).

Combining the bounds for I1 and I2 from (72) and (76), we obtain the following lower bound for q from Eqn.
(71) valid for b ≡ N

k ≥ 7:

q − p ≥ c2
T

√
Tp(1− p) ln

N

k
, (77)

where c2 ≥ 0.1 is an absolute constant.

3. Lower bounding the regret: Finally, we choose p = 1
2k . Substituting the bounds (70) and (77) into the

regret lower bound (69), for T ≥ 16k ln(Nk ) and N
k ≥ 7, we obtain:

max
{rt}Tt=1

RT ≥ c2k
√
T

2k
(1− 1

2k
) ln

N

k

(
1− 3

4k

)k−1

≥ c3
√
kT ln

N

k
, (78)

where c3 ≥ 0.02 is an absolute constant. �

12 Additional Experimental Results

In Figure 4, we plot the hit rates (i.e., the fraction of correct predictions) of various prediction policies for the
k-sets problem for the MovieLens dataset. From the plots, we observe that by selecting only 30% of the elements
(i.e., k/N = 0.3), the SAGE policy with πbase = Hedge achieves a hit rate of at least 60%. We also measure the
performance of the proposed policy for the k-sets problem on Wiki-CDN dataset (Berger et al., 2018). This
dataset contains publicly available Wikipedia CDN request traces from a server located in San Francisco. It
contains trace for T ∼ 105 time stamps and N ∼ 2500 files. We compare the performance of different policies in
terms of the normalized regret and hit rates in Figure 5 and 6 respectively. From the plots, we observe that the
SAGE policy outperforms other benchmarks by a large margin.
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Figure 4: Comparison among different
prediction policies in terms of hit rates
(fraction of correct predictions) for dif-
ferent values of k/N, N ∼ 2400 for the
MovieLens dataset.
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Figure 5: Comparison among different
prediction policies in terms of normalized
regret RT

T
with k/N = 0.1, N ∼ 2500 for

the Wiki-CDN dataset.
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Figure 6: Comparison among different
prediction policies in terms of hit rates
(fraction of correct predictions) for dif-
ferent values of k/N, N ∼ 2500 for the
Wiki-CDN dataset.

12.1 Experiments with the learning policy for Monotone Reward Functions (Section 6)

In our experiments for the general monotone reward functions, we use a subset of the MovieLens dataset with
T ∼ 200 and N = 100. Similar to Section 8, we assume that the movies are sorted according to genres so that if
movie i is chosen by the user at round t, then the reward vector, rt ∈ [0, 1]N , is given as rt,j = 1− 1

N |j − i|. For
a reward vector rt and real-valued function v : RN → R≥0, we define a monotone set function ft : 2[N ] → R≥0 as
ft(S) = v(rt(S)),∀S ⊆ [N ] where [rt(S)]i = rt,i · 1 {i ∈ S}. According to the k-experts setting, we assume that
the learner receives a reward of ft(St) for predicting the set St. In our experiments, we consider two different
reward functions v : x 7→ ||x||p, with p = 2 and p =∞. In Figure 7 and 8, we plot the rewards obtained by the
learner as a fraction of the total possible rewards (when all the elements are selected). From the plots, it is clear
that the proposed policy has excellent performance for both reward functions, as it achieves a large fraction of
the total possible reward by using only a small fraction of the experts.
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Figure 7: Performance of prediction policy in terms of frac-
tion of total possible reward (by selecting all the elements)
obtained for N = 1000, v : x 7→ ||x||2 for the MovieLens
dataset.
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Figure 8: Performance of prediction policy in terms of frac-
tion of total possible reward (by selecting all the elements)
obtained for N = 1000, v : x 7→ ||x||∞ for the MovieLens
dataset.
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