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Introduction

Introduction

We consider a scheduling problem for efficiently integrating a 5G backhaul with the
front-haul (RUs).

Figure courtesy: IEEE future networks

A vRAN architecture
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Background

Technical Background

vRAN Architecture: UE scheduling and part of baseband processing are done at
Central Units (CU) located at the edge cloud

This split-processing architecture reduces computational overhead on the remote
units (RRH)

The scheduled data is transported

1 First, from the CU to RUs via a Passive Optical Network PON

2 Then, the data is immediately transmitted over the air at the same slot

In particular, no queueing takes places at RUs, which improves the latency.
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Background

The Scheduling Problem with PON capacity constraint

Figure courtesy: Medium Technology

PON
(fixed capacity)

same-slot transmission

Time-Varying

UE channels

Problem: How to efficiently schedule data to the UEs with time-varying wireless
channels through a fixed-capacity PON?

6 / 33



Scheduling Algorithms for 5G Networks with Mid-haul Capacity Constraints

Background

The Scheduling Problem with PON capacity constraint

Figure courtesy: Medium Technology

PON
(fixed capacity)

same-slot transmission

Time-Varying

UE channels

Problem: How to efficiently schedule data to the UEs with time-varying wireless
channels through a fixed-capacity PON?

7 / 33



Scheduling Algorithms for 5G Networks with Mid-haul Capacity Constraints

Background

The Scheduling Problem with PON capacity constraint

Figure courtesy: Medium Technology

PON
(fixed capacity)

same-slot transmission

Time-Varying

UE channels

Problem: How to efficiently schedule data to the UEs with time-varying wireless
channels through a fixed-capacity PON?

8 / 33



Scheduling Algorithms for 5G Networks with Mid-haul Capacity Constraints

Results

Our results

Limitation of the State-of-the-art

We show that the well-known Proportional Fair scheduler is not optimal in this
architecture

Our contributions - Single Cell

Polynomial-time LP-based algorithm with a guaranteed 2-approximation

Pseudo polynomial-time Optimal scheduling using Dynamic Programming

Our contributions- Multi Cell

A Matroid-based greedy 2-approximation algorithm

Main Challenge

Scalable solution to a hard combinatorial packing problem.

Disruption

Simulation shows that the proposed algorithm achieves > 2X gain over the PF
scheduler.
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System Model

System Model

Total Capacity C

γijk (t)

Central Unit UEs

i th RU
Ci

jth UE

Remote Units

k Resource Blocks (RB) per RU
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System Model

Service Constraints and Long-term objective

1 Each RU can transmit over k RBs

2 A RU can allocate a RB to at most one UE per slot.

3 The channel rates differ across the RUs and RBs. The maximum air-interface
rate for the j th UE of the i th UE for the kth RB at time t is γijk (t).

4 The aggregate service rate allocated to all users at a given time-slot is limited by
the PON capacity C .

Long-Term objective: Design a scheduling policy to maximize sum-log utility of
the users:

max
∑
ij

log(r̄ij )

where, r̄ij = lim infT→∞
1
T

∑T
t=1 yij (t) are the long-term rates.
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Algorithms

Slot-by-Slot Optimization

Using the gradient-based scheduling algorithm by Stolyar (2005), the long-term
objective reduces to the following slot-by-slot optimization problem.

Decision Variables:

Let the binary variable xijk (t) ∈ {0, 1} denote whether the kth RB is allocated to

the j th UE of the i th RU.

Let the non-negative real variable yijk (t) denote the corresponding allocated rate.

The exponentially-weighted average rate Rij (t) is computed for the UE (i , j) as follows

Rij (t + 1) = (1− β)Rij (t) + β
∑
k

yijk (t)

︸ ︷︷ ︸
current rate

,

for some fixed small parameter β > 0.
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Algorithms

Mixed Integer Linear Program (MILP) formulation

Problem: Single Shot

max
x(t),y(t)

∑
i,j

∑
k yijk (t)

Rij (t)
.

Subject to,∑
j

xijk (t) ≤ 1 (at most one UE per RB)

yijk (t) ≤ γijk (t)xijk (t) (instantaneous air-interface rate constraint per RB)∑
i,j,k

yijk (t) ≤ C (PON capacity constraint)

∑
j,k

yijk (t) ≤ Ci , (RU-specific capacity constraints (for multi cell))

xijk (t)︸ ︷︷ ︸
binary

∈ {0, 1}, yijk (t)︸ ︷︷ ︸
continuous

≥ 0.
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Algorithms

Structural Results - Single Cell

For the Single Cell problem, there is no RU-specific capacity constraint (i.e.,
Ci =∞, ∀i) and the problem is equivalent to a single RU. Hence, we drop the index i
in this section.

Definition (Almost Discrete (AD) Allocation)

A feasible rate-allocation vector (x(t), y(t)) is called Almost Discrete if
yjk (t) = γjk (t)xjk (t) for all but (at most) one RB.

Theorem (Optimality of AD)

There exists an optimal solution to Single Shot which is Almost Discrete.

We present two different proofs of this theorem in the paper.

The first one is constructive and algorithmic

The second one utilizes combinatorial properties of a resulting LP.
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Algorithms

MILP to LP Relaxation

The previous theorem proves that the constraint yjk (t) ≤ γjk (t)xjk (t) is tight in
almost all RBs.

Hence, it is natural to consider the following LP relaxation by yjk (t)← γjkxjk (t):

Problem: RLP

max
x(t)

∑
jk

xjk (t)
γjk (t)

Rj (t)

Subject to, ∑
j

xjk (t) ≤ 1, ∀k.

∑
jk

γjkxjk ≤ C ,

x ≥ 0.

R Clearly, the solution to RLP will be a good approximation to Single Shot if
RLP also has the AD property (i.e., mostly 0-1 solutions).

23 / 33



Scheduling Algorithms for 5G Networks with Mid-haul Capacity Constraints

Algorithms

MILP to LP Relaxation

The previous theorem proves that the constraint yjk (t) ≤ γjk (t)xjk (t) is tight in
almost all RBs.

Hence, it is natural to consider the following LP relaxation by yjk (t)← γjkxjk (t):

Problem: RLP

max
x(t)

∑
jk

xjk (t)
γjk (t)

Rj (t)

Subject to, ∑
j

xjk (t) ≤ 1, ∀k.

∑
jk

γjkxjk ≤ C ,

x ≥ 0.

R Clearly, the solution to RLP will be a good approximation to Single Shot if
RLP also has the AD property (i.e., mostly 0-1 solutions).

24 / 33



Scheduling Algorithms for 5G Networks with Mid-haul Capacity Constraints

Algorithms

Solution Structure of RLP

Theorem (RLP has the AD property)

An optimal solution to RLP allocates every RB to at most one UE, excepting, at most
one RB, which is shared between two UEs.

The proof of this theorem crucially utilizes the properties of the Basic Feasible
Solutions.

The above theorem suggests the following policy which we prove to be 2-optimal.

Algorithm 1 LP-based 2-Approximation Algorithm for Single Shot

1: Find the maximum possible objective value obtainable by using a single RB, i.e.,

Fmax = max
j,k

1

Rj
min{γjk ,C}.

2: Solve the Linear Program RLP. Let I be the objective value obtained by the stan-
dalone RBs (i.e., for which xjk = 1 for some j) in its optimal solution.

3: Choose the solution corresponding to the maximum of I and Fmax.

R In the paper, we also design a pseudo-polynomial time Optimal algorithm for
Single Shot using DP.
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Algorithms

Structural results - Multi-Cell

In the Multi-Cell case, the RU-specific capacity constraints Ci are active.

Let I be the set of all feasible RB assignments, E be the ground set.

Lemma

The system (E , I) is a partition matroid.

Let f : I → R+ be the optimal objective function for a given RB assignment. Note
that f (·) can be evaluated efficiently by solving an LP.

Lemma

The set function f (·) is submodular.

By the well-known Fisher-Nemhauser-Wolsey (1978) paper, the above two properties
readily shows that a greedy algorithm is within a factor of 2 of the optimal.
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Algorithms

2-approximation Algorithm for Single Shot

Algorithm 3 Greedy Algorithm for Single Shot (Multi-Cell)

1: S ← φ
2: while 1 do
3: Find a feasible augmentation S̄ ∈ I of S that maximizes f (S̄) subject to the

constraint |S̄ \ S | = 1.
4: if f (S̄) = f (S) then
5: break
6: else
7: S ← S̄
8: end if
9: end while
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Simulations

Simulation Results-I

Setup: 1 km2 area, 1000 users distributed according to PPP, 100 cells, 20 MHz BW.

Single-Shot objective (C = 1 Gbps) Single-Shot objective (C = 103 Gbps)
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Simulations

Simulation Results-II

Long-term UE rate distribution (C = 1 Gbps) Long-term UE rate distribution (C = 103 Gbps)
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Conclusion

Conclusion and Future Works

We considered the problem of downlink vRAN scheduling with mid-haul
constraints.

We have proposed an LP-based (2-approx.), a DP based (pseudo-poly, optimal)
algorithms for single cell

We have also proposed a matroid-based 2-approx. algorithm for multi-cell

Our model assumed that there is no inter-cell interference (due to CoMP). We
will be extending our methodologies when this assumption does not hold.

In future, we are looking forward in implementing these algorithms in our 5G-test
bed
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