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Abstract—We consider the problem of efficient packet dissemination in wireless networks with point-to-multipoint wireless broadcast
channels. We propose a dynamic policy, which achieves the broadcast capacity of the network. This policy is obtained by first
transforming the original multi-hop network into a precedence-relaxed virtual single-hop network and then finding an optimal
broadcasting policy for the relaxed network. The resulting policy is shown to be throughput-optimal for the original wireless network
using a sample-path argument. We also prove the NP-completeness of the finite-horizon broadcasting problem, which is in contrast
with the polynomial-time solvability of the problem with point-to-point channels. Illustrative simulation results demonstrate the efficacy
of the proposed broadcast policy in achieving the full broadcast capacity with low delay.

Index Terms—Wireless broadcasting, Scheduling, Queueing Theory, Throughput Optimality

1 INTRODUCTION AND RELATED WORK

The problem of disseminating packets efficiently from a
set of source nodes to all nodes in a network is known
as the Broadcasting Problem. Broadcasting is a fundamental
network functionality, which is used frequently in numerous
practical applications, including military communication
[1], information dissemination in disaster management [2],
in-network function computation [3], and efficient dissemi-
nation of control information in vehicular networks [4].

Due to its fundamental nature, the Broadcasting problem
in wireless networks has been studied extensively in the
literature. As a result, a number of different algorithms have
been proposed for optimizing different efficiency metrics.
Examples include minimum energy broadcasting [5], mini-
mum latency broadcasting [6], broadcasting with minimum
number of retransmissions [7], and throughput-optimal
broadcasting [8]. A comprehensive study of different broad-
casting algorithms proposed for Mobile Adhoc networks is
presented in [9].

A fundamental feature of the wireless medium is the
inherent point-to-multipoint nature of wireless links, where
a packet transmitted by a node can be heard by all its neigh-
bors. This feature, also known as the wireless broadcast
advantage, is especially useful in network-wide broadcast
applications, where the objective is to disseminate the pack-
ets among all nodes in the network efficiently. Additionally,
because of inter-node interference, the set of simultaneous
transmissions in a wireless network is restricted to the set
of non-interfering feasible schedules. Designing a broadcast
algorithm which efficiently utilizes the broadcast advantage,
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while respecting the interference constraints is a challenging
problem.

The problem of throughput optimal multicasting in
wired networks has been considered in [10]. In our recent
works [11], [12], [13], we studied the problem of throughput
optimal broadcasting in wireless networks with directed
point-to-point-links and designed several efficient broadcast-
ing algorithms. The problem of designing throughput op-
timal broadcasting policy in wireless networks with point-
to-multipoint links was considered in [14], where the authors
studied a highly restrictive “scheduling-free” model, where
it is assumed that scheduling decisions are made by a
central controller, acting independently of their algorithm.
With this assumption, they obtained a randomized packet
forwarding scheme, which requires a continuous exchange
of control information among the neighboring nodes. This
algorithm was proved to be throughput optimal with respect
to the given schedules, using fluid limit techniques. There
is also a large body of literature dedicated to the broad-
casting/multicasting problem using network coding [15],
[16], [17], [18]. However, in this work, we do not assume
any coding capability of the nodes and stick to the simple
copy-and-forward-based policies to (1) minimize the packet
decoding delay, (2) eliminate the computational burden of
coding on power-constrained wireless nodes, and (3) reduce
the memory requirement for maintaining the system-state.

This paper considers the joint problem of throughput
optimal scheduling and packet dissemination in wireless
networks with point-to-multipoint links. Our approach uses
the concept of virtual network, that we recently introduced in
[19] for solving the generalized network flow problem with
point-to-point links. To the best of our knowledge, this is the
first known throughput optimal broadcasting algorithm in
wireless networks with broadcast advantage.

The main contributions of this paper are as follows:

o We propose a dynamic online policy for throughput-
optimal broadcasting in wireless networks with

point-to-multipoint links.



e We prove the NP-completeness of the corresponding
finite horizon wireless broadcasting problem.

¢ We introduce a new control policy and proof tech-
nique by combining the stochastic Lyapunov drift
theory with the deterministic adversarial queueing
theory. This methodology enables us to derive a
stabilizing control policy for a multi-hop network by
solving the problem on a simpler precedence-relaxed
virtual single-hop network.

The rest of the paper is organized as follows. In Section
2 we describe the system model and formulate the problem.
In Section 3 we prove the hardness of the finite-horizon
version of the problem. Next, in Section 4 we derive an
optimal control policy for a related relaxed version of the
wireless network. This control policy is then applied to the
original unrelaxed network in section 5, where we show
that the resulting policy is throughput-optimal when used in
conjunction with a priority-based packet scheduling policy.
In Section 6, we demonstrate the efficacy of the proposed
policy via numerical simulations. Finally, we conclude the
paper in Section 8. A preliminary version of this paper
appeared earlier in [20].

2 SYSTEM MODEL AND PROBLEM FORMULATION

We consider the problem of efficiently disseminating pack-
ets, arriving randomly at source nodes, to all nodes in a
wireless network. To clarify the terminology, in this paper,
the term “broadcasting” refers to the act of routing packets
to all nodes in a network in a multi-hop fashion. On the other
hand, the term “point-to-multipoint transmission” refers to
the multicasting nature of single-hop wireless links, where
a transmitted packet is heard by all neighboring nodes
of a transmitter due to the wireless broadcast advantage.
The system model and the precise problem statement are
described below.

2.1 Network Model

Consider a wireless network with its topology given by the
directed graph G(V, E). The set V' denotes the set of all
nodes, with |V| = n. If the node j is within the transmission
range of node i, there is a directed edge (4, j) € E connect-
ing them. Due to the inherent point-to-multipoint broadcast
nature of the radio channel, a transmitted packet can be
heard by all out-neighbors of the transmitting node. In
other words, the packets are transmitted over the hyperedges,
where a hyperedge is defined to be the union of all outgoing
edges from a node. The system evolves in a slotted time
structure. External packets, which are to be broadcasted
throughout the network, arrive at designated source nodes.
For simplicity of exposition, we consider only static net-
works with a single source node r. However, the algorithm
and its analysis presented in this paper extend to time-
varying dynamic networks with multiple source nodes in
a straightforward manner. We will consider time-varying
networks in our numerical simulations.

2.2 Wireless Transmission Model

When a node ¢ € V is scheduled for transmission, it
can transmit any of its received packets at the rate of ¢;

®

Fig. 1. An example of packet transmission over hyperedges -
when the node 1 transmits a packet, assuming no interference,
it is received simultaneously by the neighboring nodes 2,3 and
4.

packets per slot to all of its out-neighbors over its outgoing
hyperedge. See Figure 1. Due to the wireless interference
constraint, only a selected subset of nodes can feasibly trans-
mit over the hyperedges simultaneously without causing
a collision. The wireless channel is assumed to be error-
free otherwise. The set of all feasible transmission schedules
may be concisely described using the notion of a Conflict
Graph C(G). The set of vertices in the conflict graph is the
same as the set of nodes in the network V. There is an edge
between two nodes in the conflict graph if and only if these
two nodes cannot transmit simultaneously without causing
collision. Note that our node-centric definition of conflict
graphs is a little different from the traditional edge-centric
definition of conflict graph, which concerns point-to-point
transmissions [21].

As the simplest example of the interference model, consider
a wireless network where each node transmits on a separate
channel, causing no inter-node interference. Hence, any sub-
set of nodes can transmit at the same slot, and the conflict
graph does not contain any edges. For another example,
consider a wireless network subject to primary interference
constraints. In this case, the edge (i, j) is absent in the conflict
graph C(G) if and only if nodes ¢ and j are not in the
transmission range of each other and their out-neighbor-sets
are disjoint. The set of all feasible transmission schedules M
consists of the set of all Independent Sets in the conflict graph.
Note that the above definition of feasible schedules and
conflict graph does not allow any collision in the network.
The same assumption was also used in [14], where such
schedules were called “interference-free”. However, due to
the point-to-multipoint nature of the wireless medium, it is
possible (and sometimes beneficial) to consider schedules
that allow some collisions, so that a transmitted packet may
be correctly received only by a strict subset of neighbors.
As it will be clear in what follows, it is straightforward to
extend our algorithm to allow such general schedules, albeit
at the expense of additional computational complexity. In
order to present the main ideas in a simplified setting, in
the following, we stick to the “interference-free” schedules,
as defined above.

2.3 The Broadcast Policy-Space I1

We first recall the definition of a connected dominating set
of a graph G [22].



Definition 1 (Connected Dominating Set). A connected
dominating set D of a graph G(V, E) is a subset of
vertices with the following properties:

¢ The source node r isin D.

o The induced subgraph G(D) is connected.

e Every vertex in the graph either belongs to the
set D or is adjacent to a vertex in the set D.

A connected dominating set D is called minimal if
D\ {v} is not a connected dominating set for any v € D.
The set of all minimal connected dominating set is denoted
by D.

A packet p is said to have been broadcasted by time ¢ if the
packet p is present at every node in the network by time ¢.
It is evident that a packet p is broadcasted if it has been
transmitted sequentially by every node in a connected dom-
inating set D. An admissible broadcast policy 7 is a se-
quence of actions {7 }+>¢ executed at every slot ¢. The action
at time slot ¢ consists of the following three operations:

1) Route Selection: Assign a connected dominating set
D € D to every incoming packet at the source r for
routing.

2) Node Activation: Activate a subset of nodes from
the set of all feasible activations M.

3) Packet Scheduling: Transmit packets from the acti-
vated nodes according to some scheduling policy.

The set of all admissible broadcast policies is denoted by II.
The actions executed at every slot may depend on any past
or future packet arrival and control actions.

Assume that under the action of the broadcast-policy 7,
the set of packets received by node 7 at the end of slot 7" is
N7 (T). Then the set of packets B(T) received by all nodes,
at the end of time T is given by

B™(T) = (| N/ (T). (1)
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2.4 Broadcast Capacity \*

Let R™(T) = |B™(T)| denote the number of packets de-
livered to all nodes in the network up to time 7', under
the action of an admissible policy 7. Also assume that the
external packets arrive at the source node with expected rate
of A packets per slot. The policy 7 is called a broadcast policy
of rate \ if

. R™(T

A

) =, w.p.l 2)
The broadcast capacity A* of the network is defined as

A" = sup{\ : 7 is a broadcast policy of rate A} 3)
mell

The Wireless Broadcasting problem is defined as finding
an admissible policy 7 that achieves the Broadcast rate A*.

3 HARDNESS RESULTS

Since a broadcast policy, as defined above, continues to
be executed forever (compared to the finite termination
property of standard algorithms), the usual notions of
computational complexity theory do not directly apply in
characterizing the complexity of these policies. Neverthe-
less, we show that the closely related problem of finite
horizon broadcasting is NP-hard. Remarkably, this problem
remains hard even if the node activation constraints are
eliminated (i.e., all nodes can transmit packets at the same
slot, which occurs e.g., when each node transmits over a
distinct channel). Thus, the hardness of the problem arises
from the combinatorial nature of distributing the packets
among the nodes. This result is in sharp contrast with the
polynomially solvable WIRED BROADCAST problem where
the broadcast nature of the wireless medium is absent and
different outgoing edges from a node can transmit different
packets at the same slot [11], [13], [23].

Consider the following finite horizon problem called
Wireless Broadcasting, with the input parameters G, M, T

o INSTANCE: A Graph G(V, E) with capacities C' on
the nodes. A set of M of packets with |[M| = M at
the source and a time horizon of T slots.

e QUESTION: Is there a scheduling algorithm 7 which
routes all of these M packets to all nodes in the
network by time T' > 2, i.e., B"(T) = M?

We prove the following hardness result:

Theorem 3.1. Wireless Broadcast is NP-complete.

Proof of Theorem 3.1 is based on reduction from the the
NP-complete problem Monotone Not All Equal 3-SAT [24] to
the Wireless Broadcasting problem. The complete proof of
the Theorem is provided in Appendix 9.1.

Note that the problem for 7" = 1 is trivial as only the out-
neighbors of the source receive min(C, M) packets at the
end of the first slot. The problem becomes non-trivial for
any T" > 2. In our reduction, we show that the problem
is hard even for T' = 2. This reduction technique may
be extended in a straightforward fashion to show that the
problem remains NP-complete for any fixed T > 2.

The above hardness result is in sharp contrast with the effi-
cient solvability of the broadcasting problem in the setting
of point-to-point channels. In wired networks, the broadcast
capacity can be achieved by routing packets using maximal
edge-disjoint spanning trees, which can be efficiently com-
puted using Edmonds’ algorithm [23]. In a recent series of
papers [11], [12], we proposed efficient throughput-optimal
algorithms for wireless Directed Acyclic Graphs (DAG) in
the static and time-varying settings. In a follow-up paper
[13], the above line of work was extended to networks
with arbitrary topology. In contrast, Theorem 3.1 and its
corollary establishes that achieving the broadcast capacity in
a wireless network with the broadcast channel is intractable
even for simple network topology, such as a DAG. Also
notice that this hardness result is inherently different from
the hardness result of [25], where the difficulty stems from
the hardness of max-weight node activations, which is an



Independent Set problem. The above result should also
be contrasted with the hardness of the minimum energy
broadcasting problem [26].

4 THROUGHPUT-OPTIMAL BROADCASTING PoOL-
IcY FOR A RELAXED NETWORK

In this section, we give a brief outline of the design of the
proposed broadcast policy, which will be described in detail
in the subsequent sections. At a high level, the proposed
policy consists of two interdependent modules - a control
policy for a precedence-relaxed virtual network described
below, and a control policy for the actual physical network,
described in Section 5. Although from a practical point of
view, we are ultimately interested in the optimal control
policy for the physical network, as we will soon see, this
control policy is intimately related to, and derived from
the dynamics of the relaxed virtual network. The concept
of precedence relaxed virtual network was first introduced
in our recent paper [19].

4.1 Virtual Network and Virtual Queues

In this section we define and analyze the dynamics of
an auxiliary virtual queueing process {Q(t)};>o. Our
throughput-optimal broadcasting policy 7" will be de-
scribed in terms of the virtual queues. We emphasize that
virtual queues are not physical entities and they do not
contain any physical packet. They are constructed solely for
the purpose of designing a throughput-optimal policy for
the physical network, which depends only on the value of
the virtual queue lengths. More interestingly, the designed
virtual queues correspond to a fairly natural single-hop relax-
ation of the multi-hop physical network, as detailed below.

A Precedence-relaxed System

Consider an incoming packet p arriving at the source, which
is to be broadcasted through a sequence of transmissions by
nodes in a connected dominating set D, € D. Appropriate
choice of the set D, is a part of our policy and will be dis-
cussed shortly. In reality, the packet p cannot be transmitted
by a non-source node v € D, at time ¢ if it has not already
reached the node v by the time ¢. This causality constraint
is known as the precedence constraint in the literature [27].
We obtain the virtual queue process Q(t) by relaxing the
precedence constraint, i.e., in the virtual queuing system,
the packet p is made available for transmission by all nodes
in the set D), when the packet first arrives at the source. See
Figure 2 for an illustration.

Dynamics of the Virtual Queues

Formally, for each node 7 € V, we define a virtual queue
variable Q;(t). As described above, on the arrival of an
external packet p at the source r, the packet is replicated
to a set of virtual queues {Q;(t),i € D,}, where D, € D
is a connected dominating set of the graph. Mathematically,
this operation means that all virtual queue-counters in the
set D,, are incremented by the number of external arrivals at
the slot t. We will use the control variable A;(t) to denote the
number of packets that were routed to the virtual queue Q;
at time ¢. The service rate p(t) allocated to the virtual queues

pa (t)
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Fig. 2. lllustration of the virtual queue system for the four-node
wireless network G. Upon arrival, the incoming packet p is
prescribed a connected dominating set D, = {1,2}, which is
used for its broadcasting. Relaxing the precedence constraint,
packet p is counted as an arrival to the virtual queues Q. and
Q- at the same slot. In the physical system, the packet p may
take a while before reaching node 2, depending on the control

policy.

is required to satisfy the same interference constraint as the
physical network, i.e., u(t) € M,Vt. Hence, we can write
the one step dynamics of the virtual queues as follows:

Qi(i’ + 1) = (Ql(t) + Al(t) — Ni(t))+7 VieV (4)

4.2 Dynamic Control of the Virtual Queues

In this section, we design a dynamic control policy to
stabilize the virtual queues for all arrival rates A\ < A*. This
policy takes action (choosing the routes of the incoming
packets and selecting a feasible transmission schedule) by
observing the virtual queue-lengths only and, unlike pop-
ular unicast policies such as Backpressure, does not require
physical queue information. This control policy is obtained
by minimizing one-step expected drift of an appropriately
chosen Lyapunov function as described below. In the next
section we will show how to combine this control policy for
the virtual queues with an appropriate packet scheduling
policy for the physical networks, so that the overall policy
is throughput-optimal.

Consider the Lyapunov function L(-) defined as the Eucle-
dian 2-norm of the virtual queue lengths, i.e.,

L) =1Q(®)|2 = /Z Q3(1) ®)

The one step drift A(¢) of the Lyapunov function may be
bounded as follows:

A(t) LQ(t+1)) - L(Q(¥))

\/Z Q2+1) - ¢Z En o ©

To bound this quantity, notice that for any x > 0 and y > 0,
we have
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The inequality above follows by noting that RHS minus LHS
is non-negative. Substituting =z = [|Q(¢t + 1)||* and y =
||Q(t) ||? in the inequality (7), we have the following bound
on the one-step drift (6) for any ||Q(t)|| > 0

1 - -
A ? - Q7
0= g (S @ern-@w)  ®
From the virtual queue dynamics (4), we have:
Qit+1)* < (Qi(t) — m(t) + 4:(1)*
Q3 (1) + AF(1) + 1 (1) + 2Qi (1) Ai (1)
= 2Qi(t)pi(t) — 2pi(t) Aq(t)
Since p;(t) > 0 and A4;(t) > 0, we have
QA +1) — G3(0) < A2(1) + (1)
+2Qi(t) Ai(t) — 2Qi(t) i (t) )

Hence, combining Eqns. (8) and (9), the one-step Lyapunov
drift, conditional on the current virtual queue-length Q(),
under the action of an admissible policy 7 is upper-bounded
as:

E(AT(D)IQ() = Q)

O B(L@G(t+1) - LG1)IG(M) = Q)

< 2||Q<B+ZZQ E(A7(01Q(1) = Q)
(a)

- 22X AR 0Ia0 =a)) 1)

(b)

where the constant B = Y .(EA?(t) + Eui(t)) <
n(EA% + c2,.). By minimizing the upper-bound on
drift from Eqn. (10), and exploiting the separable nature of
the objective, we obtain the following control policy for the
virtual queues:

Universal Max Weight (UMW) policy for the Virtual
Queues

1. ROUTE SELECTION: We minimize the term (a) in
the above with respect to all feasible controls to obtain
the following routing policy: Route the incoming packet
at time ¢ along the minimum-weight connected dominating
set (MCDS) DYMW (t), where the nodes are weighted by the
virtual queue-lengths Q(t), i.e.,

DY (#) = arg min ; Qi(t)1(i € D) (11)

2. NODE ACTIVATIONS: We maximize the term (b) in the
above with respect to all feasible controls to obtain the fol-
lowing node scheduling policy: At time ¢ activate a feasible
schedule p"™W(¢) having the maximum weight, where the
nodes are weighted by the virtual queue-lengths Q(t), ie.,

M"™W(t) = arg nax g‘; Qi(t)e (i € M) (12)

In connection with the virtual queue systems Q(t), we
establish the following theorem which will be essential

Comparison of the broadcasting policy proposed in this paper with that

The broadcasting policy
proposed in [19]

The broadcasting policy
proposed in this paper

1. This paper considers the
generalized flow problem,
including the broadcasting
problem with point-to-point
links.

1. This paper considers the

broadcasting problem with
point-to-multipoint wireless
links.

2. The broadcast-route for a
packet corresponds to a
Spanning Tree.

2. The broadcast-route for a
packet corresponds to a
Connected Dominating Set.

3. The routing part of the

broadcasting problem is in P.

3. The routing part of the
broadcasting problem is
NP-Complete.

4. In the proposed policy, the
virtual queues are associated
with links.

4. In the proposed policy, the
virtual queues are associated
with nodes.

in the proof of the throughput-optimality of the overall
algorithm involving physical queues.

Theorem 4.1. For any arrival rate A < A* the virtual
queue process {Q(t) }+>0 is positive recurrent under
the action of the UMW policy and

max Q;(t) = O(logt)!, w.p.1.

The proof of Theorem 4.1 involves construction of an
efficient randomized policy and using it with a sharper form
of the Foster-Lyapunov theorem by Hajek [28]. This leads to
the desired sample path result. The proof is provided in
Appendix 9.2.

Discussion of the Result: Even though the virual

queue process is positive recurrent under the action of the
UMW policy, it is not true that they are uniformly bounded
almost surely. Theorem 4.1 states that, instead, the virtual
queue lengths increase at most logarithmically with time
almost surely. Theorem 4.1 also strengthens the result of
Theorem 2.8 of [29], where an almost sure o(t) bound was
established for the queue lengths?.
In the rest of the paper, we will primarily focus on the typ-
ical sample paths £ of the virtual queue process satisfying
the above almost sure bound. Formally, we define the set £
to be

max Q;(w, t) = Olog(t)), Yw €€, (13)

where P(£) = 1 from Theorem 4.1.
Given the apparent similarity between this algorithm

and the algorithm presented in our earlier work [19], it is
worth noting their difference as highlighted in Table 1.

1. Recall that, f(t) = O(g(t)) if there exists a positive constant ¢ and
a finite time ¢ such that f(¢t) < cg(t),Vt > to.

2. We say f(t) = o(g(t)) if lim¢ 00 % =0.



4.3 Bound on the Virtual Queue Size

Recall that the random variable A;(t) denotes the total
number of packets injected to the virtual queue @; at time ¢.
Similarly, the random variable 1;(¢) denotes the service rate
from the virtual queue QZ at time ¢. Hence, the total number
of packets that have been injected into any virtual queue QZ
within the time interval [t1,t2), t1 < t2 is given by

to—1

Ai(tr,ta) = Y Ai(7).

T=t1

(14)

Similarly, the total amount of service offered to the virtual
queue (); within the time interval [t1, t2) is given by

to—1

Si(ty,t2) = Y pi(T).

T=t1

(15)

Using the well-known Skorokhod representation theorem
[30] of the Queueing recursion (4), we have s

Qi(t) = sup (Ay(r,t) — Si(r, t))+.

1<r<t

(16)

Since the virtual queues @ are controlled by the UMW
policy, combining Eqn. (13) with (16), we have for all typical
sample paths w € &:

Aij(w;T,t) < Si(w;7,t) + F(w, t),

where F(w,t) = O(logt). In other words, equation (17)
states that under the UMW policy, for any packet arrival
rate A < A*, the total number of packets that are routed to
any virtual queue @); may exceed the total amount of service
offered to that queue in any time interval [7,¢) by at most
an additive term of O(logt) almost surely. In the following
section, we will show that this arrival condition enables us
to design a throughput-optimal broadcasting policy.

Vr<tieV, (17)

5 CONTROL OF THE PHYSICAL NETWORK

With the help of the one-hop virtual queue structure de-
signed in the previous section, we now focus our attention
on designing a throughput-optimal control policy for the
multi-hop physical network. Recall from Section 2 that a
broadcast policy for the physical network is specified by the
following three components: (1) Route Selection, (2) Node
Activation, and (3) Packet Scheduling. In our proposed
broadcast policy, components (1) and (2) for the physical
network are identical to the corresponding components in
the virtual network. In other words, an incoming packet p at
time ¢ is prescribed a route (i.e., a connected dominating set)
given by Eqn. (11) and the set of nodes given by Eqn. (12)
are scheduled for transmission in that slot. Note that, both
these decisions are based on the instantaneous virtual queue
lengths Q(t). In particular, it is possible that a particular
node, with positive virtual queue length, is scheduled for
transmission in a slot, even though it does not have any
packets to transmit in its physical queue. The surprising fact
that will follow from Theorem 5.2 is that this kind of wasted
transmissions are rare and they do not affect throughput.

Packet Scheduling: There are many possibilities for the

3. Note that, for simplicity of notation and without any loss of
generality, we have assumed the system to be empty at time ¢ = 0.

priority[p1]u, = =3
priority[ps]v, = —2

Fig. 3. A schematic diagram depicting the scheduling policy LTF
in action. The packet p:’s broadcast route consists of the nodes
{v1, v2,v3,v4,...} and the packet p.’s broadcast route consists
of the nodes {v1, vs, v4, ...} as shown in the figure. At node v4,
according to the LTF policy, the packet p2 has higher priority than
the packet p; for transmission.

component (3), i.e., Packet scheduling in the physical net-
work. Recall that, the packet scheduling component selects
packet(s) to be transmitted (subject to the node capacity
constraint) when multiple packets contend for transmission
by an active node and plays a role in determining the phys-
ical queuing process. In this paper, we consider a priority
based scheduler which gives priority to the packet which
has been transmitted by the nodes the least number of times.
We call this scheduling policy Least Transmitted First or
LTF. The LTF policy is inspired from the Nearest To Origin
policy of Gamarnik [31], where it was shown to stabilize
the queues for the unicast problem in wired networks in a
deterministic adversarial setting. In spite of the high-level
similarities, however, we emphasize that these two policies
are different, as the LTF policy works in the broadcast setting
with point-to-multipoint transmissions and involves packet
duplications.

Definition 2 (The policy LTF). If multiple packets are
available for transmission by an active node at the
same time slot ¢, the LTF scheduling policy gives
priority to a packet which has been transmitted the
smallest number of times among all other contend-
ing packets.

See Figure 3 for an illustration of the LTF policy.

5.1 Stability of the Physical Queues

Let us denote the length of the physical queue at node
i at time ¢t by Q;(t). Note that the number of packets
which arrive at the source in the time interval [r,t) and
whose prescribed route contains the node 3, is equal to the
corresponding arrival in the virtual network A;(7,t), given
by Eqn. (14). Similarly, total service offered by the physical
node ¢ in the time interval (7, t] is given by S;(7, t), defined
in Eqn. (15). Thus, the bound in Eqn. (17) may be interpreted
in terms of the packets arriving to the physical network. This
leads to the following theorem:



Theorem 5.1. Under the action of the UMW policy with
LTF packet scheduling, we have for any arrival rate
A<\,

> Qit) = O(logt), w.p.1.
eV
This implies that,

. i(t
hHl ZZGVQ ( ) _ 07
t—00 t

w.p.1,

i.e., the physical queues are rate-stable.

Theorem 5.1 is established by combining the key sam-
ple path property of arrivals and departures from Eqn.
(17), with an adversarial queueing theoretic argument of
Gamarnik [31]. The complete proof of the Theorem is pro-
vided in Appendix 9.3.

As a direct consequence of Theorem 5.1, we have the main
result of this paper:

Theorem 5.2. UMW is a throughput-optimal wireless
broadcast policy.

Proof: The total number of packets R(t), received by
all nodes in common up to time ¢ may be bounded in terms
of the physical queue lengths as follows

A0,8) = > Qi) (2 R(t) < A(0,1),

eV

(18)

where the inequality (*) follows from the observation that
if a packet p has not reached at all nodes in the network,
then at least one copy of it must be present in some physical
queue.

Dividing both sides of Eqn. (18) by ¢, taking limits and using
the Strong Law of Large Numbers and Theorem 5.1, we
conclude that

R(t
lim R =, wp.l.
t—oo t
Hence, from the definition (2.4), we conclude that UMW is
throughput-optimal. O

5.2 Efficient Implementation

It is evident from the description of the UMW policy that
the routing and node activation decisions are made using
the virtual queue lengths Q(t), whereas the physical packet
scheduling decisions are based on the contents of the phys-
ical queues at each node. In the following, we discuss an
efficient implementation of each of the three components in
detail.

5.2.1 Routing

A broadcast route (MCDS) is computed for each packet
immediately upon its arrival according to Eqn. (11), and
copied into its header field. The route selection involves
solving an MCDS problem with the nodes weighted by the
corresponding virtual queue lengths, which is NP-hard [32].
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This hardness result is consistent with the hardness of the
wireless broadcasting problem proved earlier in Theorem
3.1. Assuming bi-directional wireless links, a polynomial
time O(logn) approximation algorithm for this problem is
known for general graphs [33]. Furthermore, constant factor
approximation algorithms for this problem are known for
unit disk graphs [34].

5.2.2 Node Activation

At every slot a non-interfering subset of nodes is activated
by choosing a maximum weight independent set in the
conflict graph C(G), where the nodes are weighted by their
corresponding virtual queue lengths, see Eqn. (12). The
problem of finding a maximum weight independent set in
a general graph is known to be NP-hard [32]. However, for
the special case, such as unit disk graphs, constant factor
approximation algorithms are available [35]. Note that, the
same issue arises in the standard max-weight policies [36].
By a similar analysis, it can be shown that using an o > 1
approximation algorithm for routing and 5 > 1 approxima-
tion algorithm for node activation, we can achieve max (aB)
fraction of the optimal broadcast capacity of the network.

5.2.3 Packet Scheduling

The LTF policy can be efficiently implemented by maintain-
ing a min-heap data-structure per node. The initial priority
of each incoming packet at the source is set to zero. Once a
packet p is received at a node 7 and the node ¢ is included
in its list of the required transmitting node, its priority
is decreased by one, and it is inserted to the min-heap
maintained at node 7. Naturally, a node discards multiple
receptions of the same packet.

5.3 Extensions

In this subsection, we briefly describe how to extend the
proposed broadcasting policy in the case of (1) multiple
source nodes, and (2) time-varying topology.

5.3.1 Multiple Source Nodes

The proposed policy works as-it-is for multiple source nodes
in a static wireless network, and preserves its throughput-
optimality. More explicitly,

1) An incoming packet to some source node s selects
its broadcast-route by computing the Minimum-
Weight Connected Dominating Set (MCDS) with s
being the root node (Eqn. (11)).

2)  The virtual queues are updated with the arrival of a
packet at any source as in Equation (4). This requires
either a centralized implementation or coordination
among all source nodes.

3) The Max-Weight node activation policy remains un-
changed (Eqn. (12)).

4) In the LTF physical packet scheduling policy, each
packet computes its traversed hop-distances from
its respective source.

By following essentially the same analysis, it can be shown
that the proposed policy with multiple source nodes is also
throughput-optimal.
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Fig. 4. A wireless network with non-interfering channels. The
broadcast capacity of the network is \* = 2.
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Fig. 5. Plot of the broadcast delay incurred by the UMW policy as
a function of the arrival rate A in the network shown in Fig. 4.

5.3.2 Dynamic Networks

The problem becomes more challenging when the network
topology changes frequently. In our numerical simulations,
we consider an instance of semi-dynamic network where the
nodes could be in either ON or OFF states, but the overall
topology remains time-invariant. We compared the perfor-
mance of the proposed policy against a standard heuristic
broadcasting policy in Fig. 7 and Fig. 8.

We believe that under certain regularity assumptions on the
nature of time-variation of the underlying topology (e.g.,
Markovian dynamics with a positive recurrent chain), a
variation of the proposed broadcasting policy can be used.
However, we postpone this generalization to future work.

6 SIMULATION RESULTS
6.1 Interference-free Network

As a proof of concept, we first simulate the UMW policy in
a simple wireless network with known broadcast capacity.
Consider the network shown in Figure 4. Here node 1 is
the source having a transmission capacity C; = 2. All
other nodes in the network have unit transmission capacity.
Assume that the channels are non-interfering, i.e., all nodes
can transmit in a slot (this holds, e.g., if the nodes transmit
on different frequencies). Since the broadcast capacity of
any wireless network is upper-bounded by the capacity
of the source, we readily have \* < 2. Also, it can be
seen from Figure 4 that by transmitting the even numbered
packets from nodes 2 and 5 (shown in blue) and the odd
numbered packets from nodes 3 and 4, a broadcast rate of
2 packets per slot can be achieved. Hence, the broadcast
capacity of the network is A* = 2. Figure 5 shows the

Fig. 6. A 3 x 3 wireless grid network with primary interference
constraints. The wireless broadcasting capacity (\*) of the net-
work is at most % (Proposition 6.1).

average broadcast delay with the packet arrival rate A in
this network under the action of the proposed UMW policy.
Note that the minimum delay is at least 2 as it takes at
least two slots for any arriving packet to reach the nodes in
the third layer. The plot confirms that the dynamic policy
achieves the full broadcast capacity.

6.2 Networks with Interference Constraints

Consider the 3 x 3 wireless grid network, shown in Fig. 6.
Assume that the transmissions are limited by primary inter-
ference constraints, i.e, two nodes cannot transmit together
if the transmissions interfere at any node in the network.
Assume that any node, if activated, has a transmission rate
of one packet per slot. In this setting we have the following
upper-bound on the broadcast capacity of the network.

Proposition 6.1. The broadcast capacity of the 3 x 3 grid
network is at most %

The proof of the proposition is provided in Appendix
94.
In Figure 7 we show the broadcast delay as a function
of the packet arrival rate, under the action of the UMW
policy on the right most curve marked (a). From the plot,
we observe that the delay-throughput curve has a vertical
asymptote approximately along the straightline A = %
This, together with lemma 6.1, immediately implies that the
broadcast capacity of the network is A* = % and confirms
the throughput-optimality of the UMW policy.

6.2.1

Next, we simulate the performance of the UMW
broadcasting policy on a fleet of vehicles moving together
as a square grid network (Figure 6). Due to the time-varying
nature of wireless channels, the nodes (vehicles) are not
always available for transmission. In particular, we assume
a simplified model where each vehicle is active for potential
transmission at a slot independently with some fixed but
unknown probability pon. The controller takes scheduling
decision by observing the current channel states. The delay
performance of the proposed UMW broadcast policy is
shown in Figure 7 (b) and (c) for two cases, pon = 0.6 and
pon = 0.4 respectively. Following similar analysis as in the

Broadcasting in a Fleet of Moving Vehicles
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Fig. 7. Plot of the broadcast delay incurred by the UMW policy as
a function of the arrival rate X in the 3 x 3 wireless grid network
shown in Fig. 6.

preceding sections, it can be shown that the UMW policy is
also throughput-optimal for time-varying networks. Hence,
from the plot it follows that the broadcast capacities of the
time-varying 3 x 3 wireless grid network are ~ 0.26 and
~ 0.22 packets per slot, for the activity parameter pon = 0.6
and pon = 0.4 respectively.

6.2.2 Numerical Comparison with an Existing Wireless
Broadcasting Protocol

In our final simulation experiment, we compare the
performance of the proposed UMW broadcasting policy
with the widely-studied Multipoint Relaying algorithm
(MPR) [37], [38], which is also a part of the Optimized
Link State Routing Protocol (OLSR) described in the RFC.
The principal difference between the UMW and the MPR
algorithm is that UMW selects the route (i.e., a connected
dominating set or CDS) for each packet dynamically
depending on the current network-wide loading condition,
whereas the MPR algorithm broadcasts along a fixed CDS,
specially chosen with 2-hop neighbor information. Due
to space constraint, we do not give details of the MPR
algorithm in this paper (see [38], [9]). In this simulation,
we use the simple 2-hop topology, shown in Fig. 4, with
the node 1 generating packets according to the Poisson
distribution of rate \ packets per slot. The wireless
transmissions are assumed to be limited by the primary-
interference constraint. The node-states are time-varying - a
node is in ON state at a slot w.p. pon, and is in OFF state
w.p. 1 — pon, independent of everything else. At the active
state, a node can transmit one packet per-slot, subject to the
interference constraint.
in Figure 8, the dotted lines (marked (a) and (b)) and
the solid lines (marked (c¢) and (d)) show the delay-
performances of the MPR policy and the UMW policy
respectively, as a function of the offered load A, for two
different values of pon. It can be observed that UMW
outperforms MPR both in terms of delay and achievable
throughput. The gain with the UMW policy becomes more
prominent with heavy traffic as the UMW policy explores
all feasible routing strategies by load-balancing among
multiple CDS, whereas the MPR policy is constrained by a
fixed (non-adaptive) routing strategy (single CDS) only.

— UMW (p,,=05)
— -MPR (p,\=05)
— -MPR (p,,=0.8)
80| —UMW (p,,=08)

70
60 PON A
50 !
401

1

30r
1

Broadcast Delay
Il

201 7 ,

Packet Arrival rate A

Fig. 8. Comparison of the broadcast delay incurred by the MPR
and the UMW policy as a function of the arrival rate X in the
wireless network shown in Fig. 4 for two different values of poy.

Fig. 9. Network Topology used for comparing Broadcasting with Point-
to-Point and Point-to-Multipoint Transmissions

6.2.3 Numerical Performance Comparison with the Algo-
rithm in [19]

We pick a simple network topology, shown in Figure 9,
to illustrate the difference in the broadcasting efficiency for
wireless networks with point-to-point links [15], and with
point-to-multipoint links that come with the wireless broad-
cast advantage. We consider the following two scenarios:
Point-to-Point Links With point-to-point wireless links, a
directed edge from node a to node b signifies that node a
can transmit packets to node b without error provided that
there is no inter-channel interference. Point-to-Point wireless
links arise in 5G mm-wave communication, e.g., when the
transmitter beam-forms its transmitted signal to the receiver
node to mitigate the high propagation loss prevalent at high
frequencies. In the simulation result shown in Figure 10, we
assumed a primary interference constraint as in [15]. With
this interference model, the set of all links which can be
activated simultaneously is the set of all Matchings of the
given network.

Point-to-Multipoint Links: With point-to-multipoint
links, all out-neighbors of a transmitting node receives the
same packet, provided no inter-channel interference. This
type of wireless links are common in sub-6 GHz systems,
e.g., 4G, and WiFi. In the plot shown in Figure 10, we used
the same node-activation constraint as discussed in Section
2, namely, two nodes a and b can simultaneously transmit
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Fig. 10. Comparison of the Broadcasting Performance for Wireless
Network in Figure 9 with Point-to-Point and Point-to-Multi-Point Trans-
missions

at the same slot provided they do not interfere at any other
common outgoing node.

Discussion: In the numerical simulation result shown in
Figure 10, we observe that broadcasting with point-to-
multipoint links outperforms broadcasting with point-to-
point links in that topology. This may be understood by
noting that with point-to-point links, it takes three trans-
missions to disseminate a packet from the source node
1 to its out-neighbors (nodes 2, 3, and 4), whereas, with
point-to-multipoint transmissions, all three out-neighbors of
the source nodes receive a packet simultaneously from the
source node in a single transmission.
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8 CONCLUSION

In this paper, we obtained the first throughput-optimal
broadcasting policy for wireless networks with point-
to-multipoint links and arbitrary scheduling constraints.
The policy is derived using the powerful framework of
precedence-relaxed virtual network, which we used earlier for
designing throughput-optimal policies for networks with
point-to-point links. Packet routing and scheduling deci-
sions are made by solving standard optimization problems
on the network, weighted by the virtual queue lengths. The
policy is proved to be throughput optimal by a combination
of the Lyapunov method and a sample path argument using
adversarial queueing theory. Extensive simulation results
demonstrate the efficiency of the proposed policy in both
static and dynamic network settings. There exist several
interesting directions to extend this work. First, in our sim-
plified model, we assumed that interference-free wireless
transmissions are also error-free. A more accurate wireless
channel model would incorporate the possibility of packet
losses associated with individual receiving nodes, due to
fading and receiver noise [12]. Second, it remains unknown
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whether the UMW policy is still throughput optimal if the
routing and node activations are made using the corre-
sponding physical queue lengths as compared to the virtual
queues. A positive result in this direction would lead to a
more efficient implementation.
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9 PROOF OF RESULTS

9.1 Proof of Hardness of the WIRELESS BROAD-
CASTING Problem

We start with the following lemma

Lemma 1. Wireless Broadcasting is in NP.

Proof: From the formulation, the problem Wireless
Broadcasting is a Decision Problem. Also, if it has a Yes
answetr, then there is a scheduling algorithm which serves
as a certificate. Hence the problem belongs to NP. O

Next we show that an NP-complete problem, named
MONOTONE NOT ALL EQUAL 3-SAT (MNAE-3SAT) re-
duces to the problem WIRELESS BROADCASTING in poly-
nomial time. This will complete the reduction.

We begin with the description of the problem MNAE-3SAT:

Fig. 11. The Gadget used for the hardness proof

9.1.1 The problem MNAE-3SAT

e INSTANCE: Set U of boolean variables, collec-
tion C of clauses over U such that each clause
¢ € C has |c| = 3 variables and none of the
clauses contain complemented variables (Morno-
tonicity).

e QUESTION: Is there a truth assignment for U
such that each clause in C has at least one true
literal and at least one false literal ?

It is known that the problem MNAE-3SAT is NP-complete
[24].

9.1.2 Reduction: MNAE-3SAT p:°'¥W|RELESS BROAD-
CASTING

Suppose we are given an instance of the problem MNAE-
3SAT (U,C). Let [U| = n and |C| = m. Denote n boolean
variables by {z;,i = 1,2,...,n}. For this instance of
MNAE-3SAT, we consider the following instance G(V, E)
of WIRELESS BROADCASTING as shown in Figure 11. The
construction is done as follows:

e There are a total of n + m + 1 nodes. The nodes are
divided into three layers as shown in Fig. 11.

e Let r € V be the source node in the first layer. The
capacity of the source node is 2. This means that, the
source node can transmit 2 packets per slot to its out-
neighbours.

e There are n nodes in the second layer of the figure
11, all of which are out-neighbors of the source node
r. Each of these nodes correspond to a variable x;
in MNAE-3SAT instance. Capacity of each of these
nodes in the second layer is one.

e There are m nodes in the third layer, each corre-
sponding to a clause ¢ € C in the MNAE-3SAT
instance. The edges incoming to a node c; are de-
fined as follows: if the clause c; is expressed as
¢j = %4y V %y, V Ty, then we add three edges
(%iy,¢5), (Xig, ¢5), (Xiy, ¢;) in the graph G(V, E). Ca-
pacities of each node in the third layer is taken to be
1.

Now consider the following instance of Wireless Broadcast-
ing on the constructed graph G(V, E). There are M = 2
packets at the source with a deadline of T' = 2 slots. We
claim that the following two questions are equivalent, i.e.,



Question 1 has a YES answer iff the Question 2 has a YES
answer.

o Question 1: Is the MNAE-3SAT instance (U, C) sat-
isfiable ?

e Question 2: Does the constructed Wireless Broad-
casting instance have a Yes Solution?

To show this, let us denote the packets sent by the source r
at the beginning of the slot by {0, 1}. Since the capacity of
the source r is 2, all nodes z1, x2, . . ., T, receive this packet
at every slot. Since the capacities of the nodes z; is only
unity, they can only transmit either packet 0 or the packet 1
at that slot. We can denote this choice by the binary variable
x;, i.e., x; = 0 if the node z; sends packet 0 and is 1 if it
sends packet 1.

Note that the node c; will receive both the packets if the
corresponding clause contains at least one 0 and at least
one 1. For a broadcast capacity of 2, all nodes must receive
both packets at every slot. This is exactly the condition for
the existence of a satisfying assignment of the MNAE-3SAT
instance. This proves the intended hardness result. B

Corollary:

As a direct consequence of the above reduction, it fol-
lows that the problem Wireless Broadcasting remains NP-
complete even with the following additional restrictions:

1) The wireless transmissions are non-interfering.

2) The graph G(V, E) is a DAG (c.f. [11], [13]).

3) The node capacities may take at most two values.
4) The in-degree of each node is at most 3.

9.2 Proof of Stability of the Virtual Queues

The proof of positive-recurrence and the sample path
result is divided into several parts. First we describe and
develop some general tools and then apply these tools to
the virtual-queue Markov Chain {Q(t) }¢>1.

9.2.1 Mathematical Tools

The key to our proof is a stronger version of the Foster-
Lyapunov drift theorem, obtained by Hajek [28] in a more
general context. The following statement of the result,
quoted from [39], will suffice our purpose. First, we recall
the definition of a Lyapunov function:

Definition 3 (Lyapunov Function). Let X denote the state
space of any process. We call a function L : X — R a
Lyapunov function if the following conditions hold:

e (1) L(z) >0,Vx € X and,
e (2)theset S(M) = {z € X : L(z) < M} is finite for
all finite M.

Theorem 9.1 (Hajek ’82). For an irreducible and aperiodic
Markov Chain {X(¢)};>¢ over a countable state space
X, suppose L : X — Ry is a Lyapunov function. Define
the drift of L at X as

AL(X) 2 (L(X(t +1)) — L(X (1) T(X(t) = X),
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where Z(-) is the indicator function. Thus, AZ(X) is a
random variable that measures the amount of change
in the value of Z in one step, starting from the state
X. Assume that the drift satisfies the following two
conditions:

e (C1) There exists an € > 0 and a B < oo such that

E(AL(X)|X(t) = X) < —¢, VX € X with Z(X) > B

e (C2) There exists a D < oo such that
IAL(X)| < D, wp.1, VX € X
Then, the Markov Chain {X (¢) }+>0 is positive recur-
rent. Furthermore, there exists scalars 8* > 0 and a

C™* < o0 such that

limsup E(exp(6*L(X (t))) < C*

t—o0

We now establish the following technical lemma, which
will be useful later.

Lemma 2. Let {Y (t)}:>0 be a stochastic process taking
values on the nonnegative real line. Supppose that
there exists scalars 6* > 0 and C* < oo such that,

limsup E(exp(8*Y (¢))) < C* (19)
t— o0
Then,

Y (t) = O(log(t)), wp.l

Proof: Define the positive constant n* = 9%. We will
show that

P(Y (t) > n*log(t), infinitely often) = 0.

For this, define the event E; as

E, = {Y(t) > " log(t)} (20)

From the given condition (19), we know that there exists a
finite time t* such that

E(exp(0*Y (1)) < C* +1, Vt > t* 1)

We can now upper-bound the probabilities of the events
FEi, t > t* as follows

P(Y'(t) = 0" log(t))

= P(exp(07Y (1)) > exp(67n" log(t)))
(@)  E(exp(*Y(t)))

s g

@ Cc*+1

S A

P(E;) =



The inequality (a) follows from the Markov inequality and
the fact that 8*n* = 2. The inequality (b) follows from Eqn.
(21). Thus, we have

[e’e} t*—1
S P(E) = ZIPEt +ZIP>Et
t=1 t=t*
<t +(C*+1)Z
tt*

2
Finally, using the Borel Cantelli Lemma, we conclude that
P(E; i.0.)=0

This proves that Y; = O(logt), w.p.1. O
Combining Theorem 9.1 with Lemma 2, we have the
following corollary

P(limsup Y; > n*logt) =

Corollary 9.2. Under the conditions (C1) and (C2) of
Theorem 9.1, we have

L(X(t)) = O(logt), wp.1

9.2.2 Construction of a Stationary Randomized Policy for
the Virtual Queues {Q(t)}:>1

Let D denote the set of all Connected Dominating Sets (CDS)
in the graph G containing the source r. Since the broadcast
rate A < A\* is achievable by a stationary randomized policy,
there exists such a policy 7* which executes the following:

e There exist non-negative scalars {af,i =
1,2,...,|D|} with > ,af = A such that each
new incoming packet is routed independently along
a CDS D; € D with probability %’?’,Vi. The packet
routed along the CDS D; corresponds to an arrival
to the virtual queues {Q;,j € D;}.

As a result, packets arrive to the virtual queue @Q;
iid. at an expected rate of ZZ jeD; aj,Vj per slot.

e A feasible schedule s; € M is selected for trans-
mission with probability p; j = 1,2,...,k iid. at
every slot. By Caratheodory’s theorem, the value of
k can be restricted to at most n + 1. This results in
the following expected service rate vector from the
virtual queues:

n+1

*
no= E pjcjs;,
j=1

Since each of the virtual queues must be stable under the
action of the policy 7%, from the theory of the GI/GI/1
queues, we know that there exists an € > 0 such that

Z a;>e€ VieV

j:iEDJ

(22)

Next, we will verify that the conditions C1 and C2 in
Theorem 9.1 holds for the Markov Chain of the virtual
queues {Q(t)}:>1 under the action of the UMW policy, with
the Lyapunov function L(Q(t)) = ||Q(t)|| at any arrival rate
A< A%
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9.2.3 \Verification of Condition (C1)- Negative Expected
Drift

From the definition of the policy UMW, it minimizes the
RHS of the drift upper-bound (10) from the set of all feasible
policies II. Hence, we can upper-bound the conditional drift
of the UMW policy by comparing it with the stationary
policy 7* described in 9.2.2 as follows:

E(AU™MW (1) Q(t) =

1 UM _
< 2IIQI( +2§/Q BEAMY(1)|Q(t) = Q)

- 2 QORGP0 = @)

i€V

515 (B2 GR(r 01G0) = Q)

eV
— 23 QuE(T (1|Q() = Q)>
1 ) o
= 99| (B - zg‘:/Qi(t) (Epj (t) — EA] (t)))
- (-2 en Z;>)
(%) B _ ZieV~Q~i(t)’ )
2(|Q] Q|

where inequality (a) follows from the definition of the UMW
policy and inequality (b) follows from the stability property
of the randomized policy given in Eqn. (22). Since the
virtual-queue lengths Q(t) is a non-negative vector, it is easy
to see that (e.g. by squaring both sides)

Y amz [ =l

eV
Hence, from Eqn. (23) in the above chain of inequalities, we
obtain

B
AUMW (¢ — —¢ 24
BAMYIQ0) = Q) < 5a 4)
Thus,
EQA™MYIQW) < -5, VIIQ = B/e

This verfies the negative expected drift condition C1 in
Theorem 9.1.



9.2.4 \Verification of Condition (C2)- Almost Surely
Bounded Dirift

To show that the magnitude of one-step drift |AL(C~2)\ is
almost surely bounded, we compute

ALQM) = |L(Q(t+1)) - L(Q(1))]
Qe + DIl = IR

Now, from the dynami~cs of the virtual queues (4), we have
for any virtual queue Q;:

Qilt +1) — Qi(1)] < [Ai(t) — pui(?)]
Thus,
||Q~(t + 1) - Q(t)|‘ S HA(t) - I"‘(t)H S \/E(Amax + Cmax)

Hence, using the triangle inequality for the ¢ norm, we
obtain

IALQ®)] = [[1Q(t + DI = [[QUNII| < Vi Amax + Cmax),

which verifies the condition C2 of Theorem 9.1.

9.2.5 Almost Sure Bound on Virtual Queue Lengths
Finally, we invoke Corollary 9.2 to conclude that

limsup ||Q()|| = O(logt), w.p.1
¢
This implies that,

max Qi(t) = O(logt), wp.l W

9.3 Proof of Theorem 5.1

Throughout this proof, we will consider only the typical
sample point w € & defined in Eqn. (13). For the sake
of notational simplicity, we will drop the argument w for
evaluating a random variable X at w, i.e., the deterministic
sample path X (w, t),w € £ will be simply denoted by X (¢).
We now make a simple observation which will be useful in
the proof of the theorem:

Lemma 3. Consider a function F' : Z, — Z,, where
Z. is the set of non-negative integers. Assume that
F(t) = O(logt). Define M(t) = supg<,<; F (7).
Then, -

1) M(t) is non-decreasing in t and M (t) > F(t).
2) M(t) = O(logt).

Proof: Clearly, M (t) supg<,<; F'(T) > F(t) and

M(t+1)= sup F(r)> sup F(r)=M(t).
0<r<t+1 0<r<t
To prove the second claim, let ¢,,.x (t) = arg maxo<,<¢ (7).
Clearly, tmax(t) < t. Hence, for large enough ¢, we have
M(t) = F(tmax(t)) = O(log tmax(t)) = O(logt).

|
As a consequence of Lemma 3 applied to Eqn. (17), we
have almost surely

for some non-decreasing function M (t) = O(logt). We

now return to the proof of the main result, Theorem 5.1.
Proof: Our proof technique is inspired by an adver-

sarial queueing theory argument, given in [31]. We remind
the reader that we are analyzing a typical sample path satis-
fying Eqn. (25), which holds almost surely. In the following
argument, each copy of a packet is counted separately.
Without any loss of generality, assume that we start from
an empty network at time ¢t = 0. Let R(¢) denote the total
number of packets waiting to be transmitted further at time
t, which have already been forwarded exactly k times by the
time ¢. We call such packets “layer k” packets. As we have
mentioned earlier, if a packet is duplicated multiple times
along its assigned route D (which is a connected dominating
set (or CDS, in short)), each copy of the packet is counted
separately in the variable Ry(¢), i.e.,

Ri(t)= Y > Rup(t),

DEeD ieDy,

(26)

where the variable R(; p)(t) denotes the number of packets
following the CDS D, that are waiting to be transmitted by
the node i € D at time t and Dy, is the set of nodes in the
CDS D, which are exactly k™ hop away from the source
along the CDS D. We show by induction that Ry (t) is almost
surely bounded by a function, which is O(log t).

Base Step k£ = 0: Consider the source node i = r
and an arbitrary time ¢. Let ¢y < t be the largest time at
which no packets of layer 0 (packets which are present
only at the source and have never been transmitted before)
were waiting to be transmitted by the source. If no such
time exists, set ty = 0. During the time interval (¢, 1], as
a consequence of the property in Eqn. (25) of the UMW
policy, at most S, (to,t) + M(t) external packets have
arrived to the source r for broadcasting. Also, by the choice
of the time ¢, the source node r was always having packets
to transmit during the entire time interval ({o,¢t]. Since
LTF packet scheduling policy is followed in the physical
network, layer 0 packets have priority over all other packets
(in fact, there is packet of other layers present only at the
source, but this is not the case at other nodes which we will
consider in the induction step). Hence, it follows that the
total number of layer 0 packets at time ¢ satisfies

Ro(t) =Y Y Rupt) < Sc(to.t)+M(t) — S.(to,t)
DeDieDy

< M) 27)

Define By(t) o M(t). Since M(t) = O(logt), we have
By(t) = O(logt). Note that, since M (t) is non-decreasing

from Lemma (3), so is By(t).

Induction Step: As our inductive assumption,
suppose that, for some non-decreasing functions
B;(t) = O(logt),j = 0,1,2,...,k — 1, we have

R;(t) < Bj(t), for all time ¢t. We next show that there



exists a non-decreasing function By (t) = O(logt) such that
Ry (t) < By(t) for all time t.

To prove the above assertion, fix a node 7 and an arbitrary
time ¢. Let £y < t denote the largest time before ¢, such that
there were no layer k packets waiting to be transmitted
by the node i. Set ¢y = 0 if no such time exists. Hence the
node ¢ was always having packets to transmit during the
time interval (to,t] (packets in layer k or lower). The layer
k packets that wait to be transmitted by the node 7 at time
t are composed only of a subset of packets which were in
layers 0 < j < k — 1 at time ¢y or packets that arrived
during the time interval (¢,t] and include the node i as
one of their k™ transmitter along the route followed. By our
induction assumption, the first group of packets has a size
bounded by Z?;& B;(ty) < Z?;& B, (t), where we have
used the fact (using our induction step) that the functions
Bj(-)’s are monotonically non-decreasing. The size of the
second group of packets is given by >, . Ap(to,t). We
next estimate the number of layer k packets that crossed
the edge e during the time interval (o, t]. Since the LTF
packet scheduling policy is used in the physical network,
layer k packets were not processed only when there were
packets in layers up to £ — 1 that included the node 7 in
its routing CDS. The number of such packets is bounded
by Z?;& Bj(ty) < Z?;& B;(t), which denotes the total
possible number of packets in layers up to £ — 1 at time %,
plus Z?;& >_piiep, Ap(to,t), which is the number of new
packets that arrived in the interval (to, ] and includes the
node ¢ as a transmitter within their first £ — 1 hops. Thus,
we conclude that at least

k—1 k—1
nm%&mﬁfZBth:zAmmﬁQ&
j=0

j=0 D:ieD;

packets of layer k have been transmitted by the node i
during the time interval (o, t]. Hence, the total number of
layer k packets present at node ¢ at time ¢ is given as

ZB (t) + Z Ap(to,t)

Y- peien, Ri,p)(t) <

DzGDk
- Si(to,t) — ZB(t Z > Ap(to,t))
j=0 DueD;
= 223 t)—i—z > Ap(to,t) — Si(to,t)
j= OD'LGD
(@)
< 2 Z Bj(t) + Ai(to,t) — Si(to, 1)
=0
(b) k—1
< 2B+ M,
=0

where the inequality (a) follows from the fact that each
packet gets routed to a node ¢ for transmission only once
and hence

Ai(to,t) Z > Ap(to,t)

7=0 D:i€D;

VieV.
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The inequality (b) follows from the property of the typical
sample paths, stated in Eqn. (25). Hence, the total number
of layer k packets at time ¢ is bounded as

Z Z R(ZD)(t <27’LZ
i D:u€eDy

Define By (t) to be the RHS of the above equation, i.e.,

&@M)2§:B

Using our induction assumption and Eqn. (29), we con-
clude that By (t) = O(logt), and it is easily seen to be non-
decreasing. This completes the proof of the induction step.

To conclude the proof of the theorem, observe that the
sum of the lengths of the physical queues at time ¢ may be
alternatively written as

> Qi)

ieV

Ri(t) = LBy () + nM (1)

t) + nM(t) (29)

n—1

=Y Ri(t)

Since the previous inductive argument shows that for all k,
we have Ry(t) < By(t) where Bi(t) = O(logt) as., we

(30)

have }, .y Qi(t) = O(logt), and hence
. (¢
i 2iev QD oo (31)
t—00 t
OJ

9.4 Proof of Proposition 6.1

Proof: Observe that, due to the primary interference
constraints, the nodes r, a and d can not be activated at the
same slot. Consider any arbitrary policy, which activates the
node i for a fraction f;,i € V times. Hence, we have the
constraint that

fetfatic<1

On the other hand, if the policy 7 achieves a broadcast rate
of ), it must be that

(32)

A < f., (considering broadcast rate at node a)
A < fa, (considering broadcast rate at node b)
A < f., (considering broadcast rate at node f).

Adding the above three equations, we have

(a)
X< fetfat fo <1,

where the inequality (a) follows from the constraint (32).
Since the policy 7 is assumed to be arbitrary, we conclude
that the broadcast capacity of the 3 x 3 grid network is at
most % 0

(33)
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