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Abstract

In this tutorial we review the concept of smooth games as introduced by Roughgarden in [1]. We show how to upper bound
the Price of Anrchy of different games using this general tool. Then along the lines of [2], we extend the idea of smooth games
to smooth mechanisms and weakly smooth mechanisms and prove that many of the common auctions fall under this category. We
then show how efficiency results of these mechanisms in a Bayes-Nash equilibria may be derived from smoothness arguments.
Then we prove that simultaneous composition of smooth mechanism preserves the smoothness property. Hence all the previous
results about efficiency of smooth mechanisms carry over to simultaneous compositions.

I. INTRODUCTION

Selfish behavior by individual decision makers generally leads to an inefficient result, an outcome which could be improved
upon given the individuals coordinate their actions together. The Price of Anarchy (POA) measures the sub-optimality caused by
selfish behaviors. Given a game, a notion of an equilibrium (such as pure Nash equilibria), and a non-negative objective function
(such as the sum of players’ costs), the POA of the game is defined as the ratio between the largest cost of an equilibrium and
the cost of an optimal outcome. We compute POA using a smoothness argument in this tutorial. We also consider extension
of the smoothness framework in the setting of mechanism design and show that a number of popular auctions fall in this
category. It follows that smoothness of auctions ensures efficiency for Bayesian Nash Equilibrium of the underlying game.
Finally, we prove that simultaneous compositions of smooth mechanisms are smooth. This result is particularly important for
online market settings where each bidders participate in a multitude of auctions simultaneously (e.g. in eBay). Hence the above
result implies that smooth auctions with good efficiency bounds may be run simultaneously without compromising their overall
efficiency guarantee.

II. SMOOTH GAMES

The concept of smooth games was first introduced by Roughgarden in [1]. He defined it first in the context of cost-
minimization games. A cost-minimization game is defined by a 3-tuple (N ,S, C), where N is the set of players, A =

∏
iAi,

where Ai is the set of strategies available for the ith player and C =
∏
i Ci, where Ci : S → R+ is the cost function for the

ith player. The social-cost for the game for the strategy-vector s ∈ S is given by the separable function

C(s) =
∑
i∈N

Ci(s) (1)

A. Smooth Games [1]

Formally, Roughgarden defined a cost-minimization game to be (λ, µ) smooth if the following holds for any strategy-pairs
(s∗, s): ∑

i

Ci(s
∗
i , s−i) ≤ λC(s∗) + µC(s) (2)

Intuitively, given two strategies s and s∗, a game is called smooth if the sum of the costs of the players due to unilateral
deviation from s to s∗ can be upper bounded by a linear combination of the social-costs at strategies s and s∗.

Definition 1 (Price of Anarchy): For a given cost-minimization game, let s∗ be an optimal action-vector for the player and
let ŝ be any Nash-equilibrium. The Price-of-Anarchy (PoA) is defined as the supremum of the ratio C(ŝ)

C(s) , where the supremum
is taken over all Nash-Equilibriums of the underlying game.
The above definition of smoothness immediately yields the following upper-bound on the Price-of-anarchy :

Theorem 1: If a cost-minimization game is (λ, µ) smooth with λ > 0 and µ < 1, then Price-of-anarchy (PoA) is upper-
bounded by λ

1−µ .
Proof: Let s∗ be a socially-optimal strategy vector, i.e. :

s∗ ∈ argmin
s∈S

C(s) (3)
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Also, let ŝ be a Nash-equilibrium of the game. Then by definition of Nash-equilibrium, we have

C(ŝ) ≡
∑
i

Ci(ŝi, ŝ−i) (4)

≤
∑
i

Ci(s
∗
i , ŝ−i) (5)

≤ λC(s∗) + µC(ŝ) (6)

Here Eqn. (4) follows from the definition of social cost function, Eqn. (5) follows from the definition of Nash equilibrium and
Eqn. (6) follows from the smoothness property of the game. The above inequality implies

C(ŝ) ≤ λ

1− µ
C(s)

This establishes the result.

B. An Example of Computation of PoA using Smoothness Arguments

1) Congestion Games with Affine Cost Functions: A congestion game is a cost-minimization game defined by a ground
set E f resources, a set k of players with strategy sets S1, S2, · · · , Sk ⊂ 2E . The abstract framework may be understood as
follows, Consider a graph G(V,E). Each player i is associated with a source-destination pair (si, ti) that they wish to travel.
The strategy set of each player is simply the set of distinct paths from his source to the destination. When xe of the users
avail the edge e ∈ E, they incur a cost of ce(xe) = aexe + be. Hence, given a strategy profile s = {s1, s2, . . . , sk}, the load
induced on the edge e is given by xe = |i : e ∈ si|. The cost incurred by the player i is simply Ci(s) =

∑
e∈Si

ce(xe) and
the total cost of the game is C(s) =

∑
i Ci(s). Interchanging the order of summations, it follows that

C(s) =
∑
e∈E

xece(xe) (7)

We have the following theorem on the PoA of Congestion games :
Theorem 2: The Price of Anarchy of congestion games is at most 5

2 .
Proof: Let the strategy set (possibly randomized) s be a Nash Equilibrium and s∗ is the socially optimal strategy. Observe

that, in the modified strategy (s∗i , s−i), the number of players using resource e is at most one more than that in s and this
resource contributes to precisely x∗e terms of the form Ci(s

∗
i , s−i). Hence

k∑
i=1

Ci(s
∗
i , s−i) ≤

∑
e∈E

(ae(xe + 1) + be)x
∗
e (8)

To proceed further, we need the following lemma :
Lemma 1: For all non-negative integers y, z, the following holds:

y(z + 1) ≤ 5

3
y2 +

1

3
z2 (9)

Proof:
a) Case 1: y = 0: Trivial.
b) Case 2: y = 1: In this case, we need to show that for all non-negative integers z, we have

z + 1 ≤ 5

3
+

1

3
z2 (10)

i.e.,

(z − 1)(z − 2) ≥ 0 (11)

which is clearly true for all z ∈ Z+.
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c) Case 3:y ≥ 2: We need to show that :

z2 − 3yz + 5y2 − 3y ≥ 0 (12)

Treating the above as a quadratic in z, it is enough to show that the discriminant is negative, i.e.

9y2 − 4(5y2 − 3y) < 0 (13)

which is true if y > 12
11 , i.e. if y ≥ 2.

Now we return to the proof of the main result. Using the above lemma, from Eqn. (8) we have
k∑
i=1

Ci(s
∗
i , s−i) ≤ 5

3

∑
e∈E

(aex
∗
e + be)x

∗
e +

1

3

∑
e∈E

(aexe + be)xe (14)

=
5

3
C(s∗) +

1

3
C(s) (15)

Finally, appealing to theorem (1), we obtain the result.

III. SMOOTH MECHANSIMS

Motivated by smooth games defined by Roughgarden, Syrgkanis and Tardos [2] generalized the idea to mechanism design
settings. They investigated the setting of simultaneous mechanisms and showed that if the component mechanisms satisfies
smoothness conditions, then the overall mechanism also satisfies smoothness conditions and hence, proving a smoothness
bound on individual mechanism yields an automatic smoothness bound on the composed mechanism.

2) Mechanisms with Quasilinear Preferences : A mechanism design setting consists of a set of n players and a set of
outcomes X ⊂ ×iXi, where Xi is the set of allocations for player i. Each player has a valuation vi : Xi → R+. Given an
allocation xi ∈ Xi and a payment pi ∈ R+, the utility of the player i is simply given by

ui(xi, pi) = vi(xi)− pi (16)

Given an outcome space X , a mechanism M is a tuple (S,X , P ), where S =
∏
i Si is the strategy space of the players,

X : S → X is the allocation function and P : S → R+
n is the payment rule.

Definition 2: (SMOOTH MECHANISM) A mechanism M is (λ, µ) smooth, if for any valuation profile v ∈ ×Vi and any
action profile a, there exists a randomized action a∗i (v, ai) for each player i such that :∑

i

ui(a
∗
i (v, ai), a−i) ≥ λOPT(v)− µ

∑
i

Pi(a) (17)

Similar to theorem (1), a smooth mechanism immediately implies that social welfare at any Correlated equilibrium of the game
is at least a constant fraction of the optimal social welfare.

Theorem 3: If a mechanism is (λ, µ) smooth and satisfies IR and NPT properties then the expected social welfare at any
Correlated Equilibrium of the game is at least λ

max{µ,1} of the optimal social welfare.
Proof: Assume that the (possibly randomized) action-profile a constitutes a correlated equilibrium of the game. Then we

have, by the definition of correlated equilibrium, for each player i and for any other action profile a∗i

ui(ai, a−i) ≥ ui(a∗i , a−i) (18)

Thus,

W (a) =
∑
i

(vi(Xi(a)) (19)

=
∑
i

ui(ai, a−i) +
∑
i

Pi(a) (20)

≥
∑
i

ui(a
∗
i (v, ai), a−i) +

∑
i

Pi(a) (21)

≥ λOPT(v) + (1− µ)
∑
i

Pi(a) (22)

Where Eqn. (20) follows from the definition of quasilinear utility, Eqn. (21) follows from Eqn. (18) and Eqn. (22) follows
from the smoothness assumption of the mechanism. If µ < 1, the result follows because of NPT property of the mechanism
(Pi(a) ≥ 0).
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On the other hand, if µ > 1, since at any correlated equilibrium, every player derives a non-negative utility (due to the
mechanism being IR). This implies vi(Xi(a)) ≥ Pi(a), i.e. W (a) ≥

∑
i Pi(a). Hence, from Eqn. (22), we have

W (a) ≥ λOPT(v) + (1− µ)W (a) (23)

Thus, we have

W (a) ≥ λ

µ
OPT(v) (24)

This proves the result.

A. Smoothness of Popular Auctions

In this section we show that two popular auctions, namely, First Price and All-Pay auctions are smooth. The derivation
consists of deriving a smoothness inequality of the form (17), by considering a hypothetical deviation from any bidding
strategy b.

1) First Price Auction:
Description: In first price auction there is one item to be auctioned off. Each bidder i has a private value vi and submits

a sealed-bid bi. We allocate the the item to the bidder with highest bid and pays an amount equal to his bid. The rest of the
bidder pays zero.

Theorem 4: The First-Price auction is (1− 1/e, 1) smooth.
Proof: Consider a valuation profile v and bidding profile b. Then we have OPT(v) = maxi vi and

∑
i Pi(a) = max bi.

Now consider the following deviation from the bidding profile b : The bidder with the highest valuation maxi vi ≡ vmax
submits a bid randomly sampled from the distribution f(b∗) = 1

vmax−b∗ and the support [0, (1− 1/e)vmax]
1 and the rest of the

bidders submit zero.
Let us denote the highest bidder by i∗. When the rest of the bidders play b−i and he samples b∗ = b, he derives the following
utility :

ui∗(b, b−i) =

{
vmax − b if b > maxk 6=i∗ bk

0 o.w.
(25)

Thus the expected utility of the player i∗ is simply

ui(b
∗, b−i) =

∫ (1−1/e)vmax

maxk 6=i∗ bk

vmax − b
vmax − b

db

≥ (1− 1/e)vmax −max
k

bk

= (1− 1/e)OPT(v)−
∑
i

Pi(a) (26)

Since, utility of the rest of the bidders are non-negative, the above inequality shows that first price auction is (1 − 1/e, 1)
smooth.

2) All-Pay Auction:
Description: Like the first price auction, in an All-Pay auction there is only one item to be auctioned off and each bidder

i has private value vi for the item. Every bidder submits a sealed bid bi. The item is allocated to the highest bidder, but unlike
the first price auction, every bidder must pay his bid, irrespective of whether he is allocated the item or not. Note that the
All-Pay auction is not IR.

Theorem 5: The All-Pay auction is an ( 12 , 1) smooth mechanism.
Proof: For a submitted bid-profile b, we consider similar deviation as in the First-Pay auction. This time, the highest

valued bidder submits a bid b∗ sampled uniformly at random from the interval [0, vmax] and all bidders submit zero. We have
OPT(v) = vmax and

∑
i Pi(a) =

∑
i bi. The utility of the highest valued bidder, denoted by i∗, is written as follows:

ui∗(b, b−i) =

{
vmax − b if b > maxk 6=i∗ bk

0 o.w.
(27)

1It can be easily checked that it is a valid probability distribution.
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Thus expected utility of the player i∗ is simply given by

ui(b
∗, b−i) =

∫ vmax

maxk 6=i∗ bk

1

vmax
(vmax − b)db

≥ vmax −max
k 6=i∗

bk −
1

2
vmax

≥ 1

2
OPT(v)−

∑
i

Pi(b) (28)

The above shows that All-Pay auction is ( 12 , 1) smooth.
3) First Price Public Project Auction:

Description: There are n bidders and m public projects. Each player i has value vij if project j is implemented. The
bidders submit their bids bij and the mechanism chooses the project j which maximizes

∑
i bij . If project j∗ is selected, player

i pays bij∗ . Hence
∑
i Pi(b) =

∑
i bij∗

Theorem 6: The First Price public project auction is
(
1−e−n

n , 1
)

smooth.
Proof: Let j∗ be the optimal project for a given valuation profile v = {vij}. Suppose each player i deviates to bidding

b∗i ∈ [0, (1− e−n)vij∗ ] with probability density function f(t) = 1/n
vij∗−b∗i

to the project j∗ and zero otherwise. Let j(b) be the
project chosen according to the submitted bid b. Clearly, if b∗i >

∑
i bij(b), then the project j∗ would be chosen instead and

player i would derive an utility of vij∗ − b∗i . Thus

ui(b
∗
i , b−i) ≥

∫ (1−e−n)vij∗

∑
i bij(b)

(vij∗ − b∗i )
1/n

vij∗ − b∗i
db∗i (29)

≥ 1

n
(1− e−n)vij∗ −

1

n

n∑
i=1

bij(b) (30)

Summing over all bidders i, we obtain
n∑
i=1

ui(b
∗
i , b−i) ≥

1

n
(1− e−n)OPT(v)−

∑
i

Pi(b) (31)

This proves the result.

B. Weak Smoothness

In this section we give a generalization of the smoothness framework to capture mechanisms that produce high-efficiency
under a no-overbidding refinement. The most prominent example among these mechanisms is the celebrated Second Price
Auction. In the second-price auction the bid of a player is his maximum willingness to pay when he wins. We start with the
following definitions :

Definition 3 (Willingness to Pay): Given a mechanism (A,X ,P) a player’s maximum willingness-to-pay for an allocation
xi when using strategy ai is defined as the maximum he could ever pay conditional on allocation xi :

Bi(ai, xi) = max
a−i:Xi(a)=xi

Pi(a) (32)

Definition 4 (Weakly Smooth Mechanism): A mechanism is weakly (λ, µ1, µ2)-smooth for λ, µ1, µ2 ≥ 0 if for any type
profile v ∈ ×iVi and for any action profile a there exists a randomized auction a∗i (v, ai) for each player i, s.t.∑

i

uvii (a∗i (v, ai), a−i) ≥ λOPT(v)− µ1

∑
i

Pi(a)− µ2

∑
i

Bi(ai, Xi(a)) (33)

Definition 5 (No-overbidding): A randomized stategy profile a satisfies the no-overbidding assumption if:

E[Bi(ai, Xi(a))] ≤ E[vi(Xi(a))] (34)

Under the assumption of no-overbidding and Weakly smooth mechanism, we have an efficiency result similar to (3).
Theorem 7: If a mechanism is weakly (λ, µ1, µ2)-smooth then any Correlated Equilibrium in the full information setting

and any mixed Bayes-Nash Equilibrium in the Bayesian Setting that satisfies the no-overbidding assumption achieves efficiency
at least λ

µ2+max{1,µ1} of the expected optimal.
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C. Examples of Weakly Smooth Mechanisms

1) γ-hybrid auction: In γ-hybrid auction, bidders submit their bids for procurement of a single item. The bidder submitting
the highest bid wins and pays his bid with probability γ and the second highest bid with probability (1− γ).

Theorem 8: The γ-hybrid auction is (γ(1− 1/e) + (1− γ)2, 1, (1− γ)2) smooth.
Proof: Consider a valuation profile v and a bid profile b. Let vmax and bmax be the highest value of the bidders and

and their bids respectively. Consider the following deviation to the bid profile b. The highest value bidder bids vmax with
probability 1−γ, and with bids b∗ ∈ [0, (1−1/e)vmax] with density f(b∗) = 1

vmax−b∗ . All remaning bidders deviate to bidding
zero in the modified profile. Clearly, if b∗ > bmax, the highest valued bidder wins. Hence his utility may be written as follows:

Case 1: i∗ bids his true value
Then if vmax ≥ bmax he wins the item and gets an utility of

ui∗(b
∗
i , b−i) = vmax − γvmax − (1− γ)bmax = (1− γ)(vmax − bmax) (35)

If vmax < bmax, he loses and gets zero utility. Hence his utility in this case is at least

(1− γ)(vmax − bmax) (36)

Case 2: i∗ bids according to the random strategy

ui∗(b
∗, b−i∗) ≥

∫ (1−1/e)vmax

bmax

(
vmax − γb∗ − (1− γ)bmax

) 1

vmax − b∗
db∗ (37)

≥
∫ (1−1/e)vmax

bmax

(
vmax − b∗

) 1

vmax − b∗
db∗ (38)

= (1− 1/e)vmax − bmax (39)

Thus his overall utility is at least

γ
(
(1− 1/e)vmax − bmax

)
+ (1− γ)

(
(1− γ)(vmax − bmax)

)
The (40)

The lemma follows by just observing that the payment under bid profile b is just γbmax.

D. The Composition Framework
Mechanisms rarely run in isolation but rather, several mechanisms take place simultaneously and players typically have

valuations that are functions on the outcomes of different mechanisms.
Consider the following general setting: there are n bidders and m mechanisms. Each mechanism Mj has its own outcome
space X j and consists of a tuple (Aj , Xj , P j). We assume that a player has a valuation over vectors of outcomes from
different mechanisms : vi : ×iXi → R+. The player i’s overall utility for the outcome xi = (x1i , x

2
i , . . . , x

m
i ) and payment

pi = (p1i , p
2
i , . . . , p

m
i ) is given by the quasilinear function

ui(xi, pi) = vi(xi(a))−
∑
j

pji (41)

The simultaneous composition of such mechanisms may be viewed as a global mechanism M = (A, X, P ), where Ai =
×jAji ,X = ×jX j and Pi(a) =

∑
j p

j
i . The social-welfare of a strategy-profile a has the following separable form :

W (a) =
∑
i

vi(xi(a)) (42)

For any valuation profile v, there exists an allocation x∗(v) which maximizes
∑
i vi(xi) over all X . We denote the resulting

optimal social welfare by OPT(v).
We restrict ourselves to a class of valuation functions known as XOS valuation defined below.

Definition 6 (XOS Valuation): A valuation is XOS if there exist a set L of additive valuations vlj(xj), such that

v(x) = max
l∈L

∑
j

vlj(xj)
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We have the following theorem regarding the smoothness of composed mechanisms
Theorem 9 (Simultaneous Composition): Consider the simultaneous composition of m mechanisms. Suppose that each

mechanism Mj is (λ, µ) smooth when the mechanism restricted valuations of the players come from a class (Vji )i∈[n]. If the
valuation vi : Xi → R+ of each player across mechanisms is XOS and can be expressed by component valuations vlij , then
the global mechanism is also (λ, µ)-smooth.

Proof: Consider a valuation profile v and an action profile a. Let x∗ be the optimal allocation for the profile v. Let v∗ij
be the representative additive valuation for x∗i , i.e.

vi(x
∗
i ) =

∑
j

v∗ij(x
∗
ij) (43)

Also, from the definition of XOS valuation, for any xi ∈ Xi

vi(xi) ≥
∑
j

v∗ij(x
j
i ) (44)

To prove the theorem, we will show that there exists a deviation a∗i = a∗i (v, ai) of the global mechanism such that∑
i

uvii (a∗i , a−i) ≥ λ
∑
i

vi(x
∗
i )− µ

∑
i

Pi(a) (45)

To define such a deviation we use the fact that each mechanism Mj is (λ, µ) smooth. Suppose that we run mechanism Mj

and each player has valuation v∗ij on X ji . By the smoothness property of the mechanism Mj , for any action profile aj , there
exists a randomized action a∗ij = a∗i (v

∗
j , a

j
i ) such that the sum of the utilities of the agents when each agent unilaterally

deviates to it, is at least λ
∑
i v
∗
ij(x

∗
ij)− µ

∑
i P

j
i (a

j).
For the global mechanism, we consider a randomized deviation a∗i = a∗i (v, ai), that consists of independent randomized
deviations a∗ij = a∗ij(v

∗
j , a

j
i ). By the properties of the representative additive valuations, we have

vi(Xi(a
∗
i , a−i) ≥

∑
j

v∗ij(X
j
i (a
∗
ij , a

j
−i) (46)

Hence, ∑
i

uvii (a∗i , a−i) ≥
∑
j,i

E[v∗ij(X
j
i (a
∗
ij , a

j
−i)− P

j
i (a
∗
ij , a

j
−i)] (47)

By smoothness of mechanism Mj :∑
i

uvii (a∗i , a−i) ≥
∑
j

(λ
∑
i

v∗ij(x
∗
ij)− µ

∑
i

P ji (aj)) (48)

= λ
∑
i

vi(x
∗
i )− µ

∑
i

Pi(a) (49)

Corollary 1: Simultaneous compositions of First Price Auctions, All-Pay auctions and Public project auctions are [(1 −
1/e), 1], [1/2, 1], [(1− e−n)/n, 1])-smooth respectively.

IV. CONCLUSION

In this tutorial, we have introduced the basic idea of smoothness of games and extension of this concept to mechanism
design. We showed that smoothness is a general tool which may be used effectively in determining the Price of Anarchy
of games and efficiency of mechanisms. We also showed that simultaneous composition of (λ, µ) smooth mechanisms are
(λ, µ)-smooth. Future direction would be to analyze PoA of more games using the smoothness framework and obtain better
bounds of efficiency of new mechanisms.
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