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Optimal caching of files in a content distribution network (CDN) is a problem of fundamental and growing

commercial interest. Although many different caching algorithms are in use today, the fundamental perfor-

mance limits of network caching algorithms from an online learning point-of-view remain poorly understood

to date. In this paper, we resolve this question in the following two settings: (1) a single user connected to a

single cache, and (2) a set of users and a set of caches interconnected through a bipartite network. Recently,

an online gradient-based coded caching policy was shown to enjoy sub-linear regret. However, due to the

lack of known regret lower bounds, the question of the optimality of the proposed policy was left open. In

this paper, we settle this question by deriving tight non-asymptotic regret lower bounds in both of the above

settings. In addition to that, we propose a new Follow-the-Perturbed-Leader-based uncoded caching policy

with near-optimal regret. Technically, the lower-bounds are obtained by relating the online caching problem

to the classic probabilistic paradigm of balls-into-bins. Our proofs make extensive use of a new result on the

expected load in the most populated half of the bins, which might also be of independent interest. We evaluate

the performance of the caching policies by experimenting with the popular MovieLens dataset and conclude

the paper with design recommendations and a list of open problems.
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1 INTRODUCTION AND RELATEDWORK

T he classical caching problem, which seeks to make popular content quickly accessible by

prefetching them in low-latency storage, has been extensively studied in the literature. The

core idea of caching has been used in many diverse domains, including improving the CPU paging
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performance via L1/L2 caches [63], web-caching by Content Distribution Networks [4, 8, 49, 54, 56],

and low-latency wireless video delivery through Femtocaching [60]. With the exponential growth of

internet video traffic and the advent of new services consuming high bandwidth, such as augmented

and virtual reality (AR/VR), the importance of caching for ensuring the quality of service (QoS) is

on the rise [15]. Top CDN providers, such as Amazon AWS and Microsoft Azure, now offer caching

as a service [16, 67].

Several caching algorithms have been proposed in the literature. The MIN algorithm [65] is

an optimal offline caching policy that assumes that the entire file request sequence is known

non-causally in advance. MIN is often used as a benchmark for comparing the performance of

the online caching policies. Among the online policies, the Least Recently Used policy (LRU), the
Least Frequently Used policy (LFU) [39], the FIFO policy [20], and the online coded caching policy

[52] have been studied extensively. The paper [42] shows how to augment online algorithms with

a machine-learned oracle to design caching policies with low competitive ratios. However, the

performance guarantees available for most of the online caching policies are highly contingent

upon some a priori assumptions on the generative model of the file request sequence [13, 58]. The

paper [34] analyzed the performance of the LRU caching policy with an i.i.d. file request sequence,

also known as the Independent Reference Model [66]. Under a Markovian assumption, the paper

[52] shows that a coded caching policy outperforms the LRU policy. The paper [24] develops a

unified framework for analyzing several popular caching policies, again with a stationary file

request model. On a different line of work, the papers [35, 36, 43, 44] derive information-theoretic

lower bounds and efficient caching, computing, and coding schemes to facilitate bandwidth-efficient

delivery of the cached files to the users.

With frequent addition of new content to the library, mobility of the users, Femtocaching with

small caches, and change in the popularity distribution with time, the assumption of stationary

file popularity barely holds in practice [64]. This prompts us to consider the problem of caching

from an online learning point-of-view with no a priori statistical assumption on the file request

sequence. The article [50] gives an excellent overview of CDN caching along this line. Our work is

inspired by the recent paper [51], which describes an online gradient-based coded caching policy

(OGA), and proves a sub-linear regret upper-bound for the same. Interestingly, they also show that

popular uncoded caching policies, such as LRU, LFU, and FIFO, suffer from linear regrets in the

worst case. In fact, no uncoded caching policy with a sub-linear regret is known previously in the

literature. More seriously, no regret lower bound is known for the network-caching problem.

In contrast to the multi-armed bandits setting [5, 19, 26, 38, 46], relatively few results are known

for the regret lower bounds for online convex optimization problems. Technically, the network-

caching problem is an instance of an online convex optimization problem with a piecewise linear

reward function and polytope constraints. The paper [3] establishes a minimax regret lower bound

for linear cost functions with hyper ball constraints. A regret lower bound for the unconstrained
linear cost functions has been obtained in [31]. The papers [30, 32] prove logarithmic regret bounds

for online stochastic strongly convex problems. However, to the best of our knowledge, except for

[51], the regret for a linear cost function with a simplex and several box constraints, which arise in

the context of the single cache problem, has not been studied before. Moreover, the problem of

lower bounding the regret for a piecewise linear cost function with polytope constraints, which

arise in the context network-caching, is entirely open.

The above considerations inspire us to ask the following two questions in this paper:

Question 1. What is the fundamental performance limit of all online caching policies regardless of
their operational constraints or computational complexity?

Question 2. Can a simple, distributed network-caching strategy be designed which meets the

above fundamental limit?
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In answering Question 1, we derive universal regret lower bounds that also apply to computa-

tionally intensive caching policies, which can completely change the profile of the cached contents

at every time slot. Surprisingly enough, we answer Question 2 in the affirmative. In particular, our

matching upper and lower bounds reveal that a simple gradient-based incremental coded caching

policy is regret-optimal. Moreover, we propose a new Follow-the-Perturbed-Leader-based uncoded

caching policy that has near-optimal regret. Hence, one of the key take-away points from this paper

is that there exist computationally cheap caching policies that perform excellently in an online

setting even with adversarial request sequence.

Our contributions: In the process of answering the above questions, we make the following key

technical contributions:

(1) Lower bound for a single cache: In Theorem (2), we prove a tight non-asymptotic regret

lower bound for the single-cache problem. This result improves upon the previously known

asymptotic regret lower bound in [51], which can be arbitrarily loose for sufficiently large library

size.

(2) Lower bounds for caching networks: In Theorems (6) and (7), we derive non-asymptotic

sub-linear regret lower bounds for bipartite caching networks. We also show that the lower bounds

are tight within constant factors. To the best of our knowledge, this is the first known regret lower

bound for piecewise linear functions with polytope constraints. Hence, our results also contribute

to the growing literature on online convex optimization.

(3) Near-optimal uncoded caching policy: Although the above lower bounds certify the

optimality of the gradient-based coded caching policy of [51], it was an open problem whether one

could achieve the optimal regret without coding. In Algorithm 1, we propose a simple uncoded

caching policy based on the Follow-the-Perturbed-Leader (FTPL) paradigm, which uses cumulative

frequency counts with added Gaussian noise for caching decisions. Theorem 3 shows that the FTPL
policy has near-optimal regret. Our theoretical results nicely complement some recent promising

empirical observations on large-scale caching systems employing similar frequency-based caching

policies [17, 22, 45].

(4) New proof techniques: In this paper, the regret lower bounds are established by relating

the online caching problem to the classic probabilistic setup of balls-into-bins via Lemma 1. In

this Lemma, we derive a tight non-asymptotic lower bound to the expected total load in the most

populated n bins whenm balls are randomly thrown into 2n bins. For our lower bound proofs, we

are particularly interested in the regimem ≫ n. It is to be noted that classical results on randomized

load balancing, such as [25, 47, 48], are not relevant to this setting because they apply only to

the regime wherem = O(n). Furthermore, we note that previous works, such as [37, 53], derive

asymptotic high-probability bounds for the maximum load for various asymptotic regimes ofm and

n. However, since we are primarily interested in the non-asymptotic expected value of Max-Load,

these asymptotic results do not suffice for our purpose. Consequently, we tackle this problem

from the first principles, culminating in Lemma 1. To the best of our knowledge, this is the first

paper where a connection between online learning and the framework of balls-into-bins has been

explicitly brought out and exploited in proving regret lower bounds.

(5) Numerical experiments. In Section 4, we compare the performance of different caching

policies on the popular MovieLens 1 M dataset [1]. Our experiments reveal that the theoretically

sound FTPL policy outperforms other competitive caching policies in terms of long-term average

regret on this trace.
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2 SINGLE CACHE
In this section, we begin our investigation with the single cache problem. We establish a key

technical lemma on the balls-into-bins problem, which is used in all of our lower bound proofs. Our

analysis in this section improves upon the best-known regret lower bound for the single caches

[51] and paves the way for analyzing the bipartite caching problem in Section 3.

2.1 System Model
In the classical caching problem with a single cache, there is a library of N distinct files. A cache

with a limited storage capacity can store at most C files at any time slot. In practice, the cache

capacity is significantly smaller compared to the entire library size (i.e., C ≪ N ). As an example,

we may think of caching the movie files in the Netflix edge-servers, where the library size N
increases every day as new movies are released, but the physical cache-size in the edge-server

remains constant on the relevant time-scale. Time is slotted, and a user may request at most one

file at a time. The file request at time slot t is represented by an N -dimensional binary vector

xt ∈ {0, 1}N , where xt f = 1 if the f th file is requested by the user at time t , and is zero otherwise

(one-hot encoding). Following an online caching policy π , files are cached at every time slot before
the request for that slot arrives. We do not make any statistical assumptions on the file request

sequence {xt }t ≥1. Thus, we may as well assume that the requests are made by an omniscient

adversary who has complete knowledge of the cached contents and the caching policy in use. See

Figure 1 for a schematic.

Coded Caching: In this paper, we consider both coded and uncoded caching. In the classical

uncoded caching, complete files are cached. On the other hand, in coded caching, the original

files are first encoded using fountain codes (a class of rateless erasure codes), e.g., Raptor code

[41, 61], and then some of the resulting coded symbols are cached. These codes have the property

that an original file consisting of k source symbols can be recovered (with high probability) by

combining any subset of k ′ coded symbols, where k ′ needs to be only slightly larger than k . Hence,
for decoding, it does not matter which encoding symbols are combined, as long as the decoder has

access to sufficiently many encoded symbols. We will see that coding offers distinct advantages

for network caching. These codes also admit highly efficient linear time encoding and decoding

operations. The rateless codes are routinely used in P2P data streaming, large scale data centers,

and CDNs [68].

Caching configuration: The cache configuration at time t is represented by an N -dimensional

vectoryπ
t ∈ [0, 1]

N
, where yπt ,f denotes the fraction of the file f cached at time t under the policy π

1
. Naturally, in the uncoded case yπt ,f ∈ {0, 1},∀f , t . The set of all admissible caching configuration

is denoted by Y where

Y =

{
y ∈ [0, 1]N :

N∑
f =1

yf ≤ C

}
, (1)

where C is the capacity of the cache. The caching decision yt may be randomized and may depend

on the file request sequence and caching decisions up to time t − 1. Any requested file, not present

in the cache, is routed to a central server (which is assumed to host every file in the library) and

accrues zero rewards.

1
Whenever the caching policy π is clear from the context, we will drop the superscript π to simplify the notation.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 25. Publication date: June 2020.



Fundamental Limits on the Regret of Online Network-Caching 25:5

Cache capacity = C

ServerUser

Fig. 1. Caching with a single cache

2.2 Performance metrics
2.2.1 Reward. A popular performance metric for any online caching policy is its average hit
rate, i.e., the average number of requested files already present in the cache so that the files can

be quickly retrieved. In this connection, let the user-generated file request sequence be denoted

by {xt }t ≥1. The total reward up to time T accrued by a caching policy, which responds to the file

requests by setting the cache configuration to yt , at time t , is denoted by Q
(
{xt }T1 , {yt }

T
1

)
. We

assume that the cumulative reward over a time horizon T has an additive structure, which may be

obtained by summing up the rewards obtained at every slot up to time T , i.e.,

Q
(
{xt }

T
1
, {yt }

T
1

)
=

T∑
t=1

q(xt ,yt ). (2)

The one-slot reward function q(·, ·) captures the reward obtained per slot. Intuitively, q(xt ,yt )
denotes the extent of cache-hits for the request vector xt against the cache configuration vector yt .
The function q(·, ·) takes different functional forms depending on whether we consider (a) single

cache, or (b) a network of caches. For the case of a single cache, we define the one-slot reward to

be the amount of the requests successfully served by the cache, i.e.,

q(xt ,yt ) ≡ xt · yt . (3)

A generalized definition of the above one-slot reward function applicable to caching networks will

be given in Section 3.

2.2.2 Regret. Since we do not make any assumption on the user-generated file request sequence

{xt }t ≥1, it is futile to attempt to optimize the total reward (i.e., hit rate). This is because, at any slot,

an omniscient adversary can always request a file that is not present in the cache, thus yielding

a total of zero hits. To obtain a non-trivial performance measure, we cast the caching problem

into the framework of online learning. This prompts us to compare the performance of any policy

with the best offline stationary optimal policy [59]. Let the vector y∗ denote any fixed stationary

cache configuration vector. The vector y∗ may be selected offline after seeing the entire request

sequence {xt }Tt=1. Following the usual convention in the online learning literature, we define the

regret RπT ({xt }
T
1
) for a request sequence {xt }T1 to be the difference in the reward obtained by the

best stationary caching configuration y∗ and that of the online policy π . Mathematically
2
,

RπT ({xt }
T
1
) := sup

y∗∈Y

(
Q
(
{xt }

T
1
, {y∗}T

1

)
−Q

(
{xt }

T
1
, {yt }

T
1

) )
. (4)

2
Recall that the cache configuration sequence {yt }t≥1 is determined by the policy π .
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The regret RπT of any caching policy π up to time T is defined to be the maximum regret over all

admissible request sequences, i.e.,

RπT := sup

{xt }T
1

RπT ({xt }
T
1
). (5)

Discussion:Note that, minimizing the regret as defined in Eqn. (5) optimizes against the worst-case

or “adversarial" file request sequence. The adversarial assumption of the request-sequence is quite

standard in the literature on caching. In fact, the classical competitive analysis of the caching

algorithms makes use of this assumption [6]. In this sequel, we will see that strong performance

guarantees against worst-case request patterns lead to robust caching algorithms both in theory

and in practice.

2.3 Standing Assumptions
In order to put our results in the proper context, we now list the main assumptions behind our

analysis. Note that these assumptions also apply to the results in [51].

(1) Generalized caching policies: We relax a requirement of the standard caching policies

(e.g., LRU, LFU), which require only items appearing in the miss-stream to be downloaded to

the cache from the server at every slot. Instead, we allow the caching policies to load any

number of arbitrary items to the cache at a slot (subject to the cache capacity constraint),

irrespective of whether those items were requested or not in the previous slot.

(2) Zero Download Cost: Since we are interested in the fundamental limits of online caching

performance, we assume that downloading content from the remote server to the cache does

not cost anything. That being said, the caching algorithms that we propose in this paper are

flexible enough to offer a smooth trade-off between the cost of caching and hit ratio. We

explore this direction empirically in Section 4.1.

(3) Zero Download Delay: At every time slot, files are assumed to be cached before the request

for that slot arrives [56].

(4) Uniform file sizes: We assume that all files have a unit size. The effect of variable file-sizes

on caching has been studied recently in [10].

(5) Negligible Coding overhead: With coded caching, we assume that files are encoded with

an efficient erasure code so that the coding overhead is negligible [61].

(6) One request per slot: For simplicity, we assume that each user requests at most one file per

slot.

Obviously, all of our lower bounds hold when some or all of the above assumptions are relaxed.

2.4 Regret lower bounds - preliminaries
Using the simple observation that the maximum of a set of real numbers is at least equal to their

average, for any joint probability distribution P({Xt }
T
t=1) on the file request sequence {Xt }

T
t=1, the

regret in Eqn. (5) may be lower bounded as follows:

RπT ≥ E{Xt }
T
1

RπT ({Xt }
T
1
). (6)

The joint distribution P(·) needs to be chosen carefully to ensure the tractability of evaluating the

expectation in (6), as well as the tightness of the resulting bound. The above technique is known

as the probabilistic method popularized by Erdős [7]. In all of our proofs, we lower bound the

quantity in Eqn. (4) by a suitable binary cache configuration vector y∗ (thus y∗ corresponds to
uncoded caching). As a consequence, all of our lower bounds remain valid in both uncoded and

coded caching.
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2.5 Regret lower bound for unit-sized cache
We first consider a single cache of unit capacity and derive a universal non-asymptotic regret bound.

As we will see in the sequel, understanding this special case lays the foundation for our subsequent

analysis of caching networks serving multiple users.

Theorem 1 (Lower bound for a single-cache of unit capacity). The regret RπT of any
online caching policy, for a library-size N = 2 and cache-capacity C = 1, is lower bounded as:

RπT ≥

√
T

2π
−

1

2

√
2πT
, ∀T ≥ 1.

Proof. Denote the cache configuration selected by the caching policy π at slot t by the vector

yt =
(
γt 1 − γt

) ′
, where γt denotes the fraction of File1 cached by the policy π (0 ≤ γt ≤ 1).

Recall the definition of regret RT in this context:

RπT = sup

{xt }T
1

sup

y∗∈Y

(
y∗ ·

T∑
t=1

xt −
T∑
t=1

yt · xt

)
, (7)

where the set of all admissible configurations Y is given by Eqn. (1). Denote the file request vector

at slot t by xt =
(
wt 1 −wt

) ′
, where wt ∈ {0, 1}. It can be easily seen that for a given file

request sequence {xt }T1 , an optimal choice of the fixed cache configuration vector y∗ in Eqn. (7) is

given as follows:

y∗ =


(
1 0

) ′
, if

∑T
t=1wt ≥ T /2,(

0 1

) ′
, if

∑
t w

T
t=1 < T /2.

To prove a universal regret lower bound, we need to show the existence of an adversarial file request

sequence {xt }T1 under which the caching policy π performs poorly. Towards this, let {Wt }t ≥1 be

a sequence of i.i.d. uniform Bernoulli random variables such that P(Wt = 0) = P(Wt = 1) = 1

2
.

Construct a random file request sequence Xt =
(
Wt 1 −Wt

) ′
. The regret incurred for the

sequence {Xt }
T
1
may be obtained from Eqn. (7) as:

RπT ({Xt }t )

= max

{ T∑
t=1

Wt ,T −
T∑
t=1

Wt

}
−

T∑
t=1

(
γtWt + (1 − γt )(1 −Wt )

)
= max

{
Z ,T − Z

}
−

T∑
t=1

(
2γtWt + 1 − γt −Wt

)
,

where the r.v. Z ≡
∑T

t=1Wt , being the summation of T i.i.d. uniform Bernoulli random variables, is

Binomially distributed with the parameters (T , 1/2). Using linearity of expectation, we can write

E{Xt }
T
1

(
RπT ({Xt )}

T
1

)
= E

(
max

{
Z ,T − Z

})
−T /2, (8)

where we have used the fact that E(Wt ) = 1/2 and the caching decision γt is independent of the
incoming request Xt . Observe that, we can write

max

{
Z ,T − Z

}
=

T

2

+ |Z −T /2|. (9)
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Thus, combining Eqns. (8) and (9), we have

E{Xt }
T
1

(
RπT ({Xt )}

T
1

)
= E

��Z −T /2��. (10)

The mean absolute deviation for a symmetric binomial random variable may be computed in closed

form by using De Moivre’s formula ([9], Eqn. (1)) as follows:

E
��Z − T

2

�� = 1

2
T

(
⌊
T

2

⌋ + 1

) (
T

⌊T
2
⌋ + 1

)
. (11)

Eqn. (11), in combination with a non-asymptotic form of Stirling’s formula [55], yields the following

non-asymptotic lower bound

E
��Z − T

2

�� ≥ √
T

2π
−

1

2

√
2πT
, ∀T ≥ 1. (12)

For details of the above calculations, please refer to Appendix 8.1. Equation (12), coupled with Eqn.

(10), shows the existence of a file request sequence {xt }T1 such that

RπT ({xt }
T
1
) ≥

√
T

2π
−

1

2

√
2πT
, ∀T ≥ 1.

□

Remarks: It can be seen that the above proof and the lower bound in Theorem 1 continue

to hold even if we let the library size to be N ≥ 2. This observation follows by constructing a

randomized file request sequence where the first two files are requested with probability
1

2
each

and other files are requested with zero probabilities.

2.6 Lower bound for caches of an arbitrary size
We now extend the previous result to caches with arbitrary sizeC ≥ 1. This extension is non-trivial.

We will see in the sequel that our analysis naturally leads us to investigate a random variable

arising in connection with the classic probabilistic framework of balls-into-bins, where a number of

balls are thrown uniformly and independently at random to some bins [53]. The following lemma,

which might be of independent interest, gives a non-asymptotic lower bound to the total number

of balls in the most populated half of the bins.

Lemma 1 (Total occupancy in the most popular half). Suppose that T balls are thrown
independently and uniformly at random into 2C bins. Let the random variableMC (T ) denote the
number of balls in the most populated C bins. Then

E(MC (T )) ≥
T

2

+

√
CT

2π
−
(
√
2 + 1)C3/2

2

√
2πT

−

√
2

π

C2

T
.

Proof outline: The proof proceeds by pairing up the bins to form super bins (see Fig. 8), and then

selects the most-occupied bin in each super bin to obtain a lower bound on MC (T ). Finally, we
conclude the proof by appealing to the mean-deviation bound in Eqn. (12). Please refer to Section

7.1 for the complete proof of Lemma 1.

To improve readability, in the rest of the paper we will rephrase the above bound as

E
(
MC (T )

)
≥
T

2

+

√
CT

2π
− Θ(

1

√
T
),
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with the understanding that an explicit form of the lower order terms may be obtained by using

Lemma 1, if required. The following Theorem is the main result of this section.

Theorem 2 (Lower bound for a single cache of arbitrary capacity). The regret RπT
of any online caching policy π , for a library size N and cache capacity C with N ≥ 2C , is lower
bounded as

RπT ≥

√
CT

2π
− Θ(

1

√
T
), ∀T ≥ 1. (13)

Proof outline: The proof proceeds along the lines of Theorem 1, where the t th file requested Xt is

chosen independently and uniformly at random from the first 2C files from the library. Then, we

show that the reward accrued by the best static cache configurationy∗ corresponds (in distribution)

to the total number of balls in the most populated half of the bins. We then conclude the proof by

appealing to Lemma 1. Please refer to Section 7.2 for the complete proof of Theorem 2.

Comparison with Theorem 1 of [51]: In the single cache setting with the same set of assumptions,

the paper [51] establishes a rather loose asymptotic regret lower bound of

√
C
Nπ

√
CT , which could

be arbitrarily smaller than the lower bound given in Eqn. (13) when the library size N is sufficiently

large. Theorem 2 improves the result in [51] in two ways. First, it proves a regret lower bound that is

independent of N . As a consequence, we will soon see that it implies that the gradient-based coded

policy of [51] is regret-optimal up to a constant factor. Theorem 2 also implies near-optimality of

the uncoded FTPL policy described in the next section. Second, unlike the regret lower bound in

[51], the bound in Eqn. (2) is non-asymptotic, thus giving a valid lower bound for any T ≥ 1.

2.7 Achievability
We note that many popular classical uncoded caching policies, such as LRU, LFU, and FIFO, have
linear regrets (Proposition 1 of [51]). This can be simply understood from the following example:

consider the single cache setting with N = 2,C = 1 and an alternating file request sequence

{xt }t ≥1 = {1, 2, 1, 2, 1, 2, . . .}. Since any missed content is always immediately loaded to the cache,

each of the above policies gets zero cumulative hits (cf. Assumption 1). On the other hand, caching

either one of the files forever achieves a total of
T
2
cumulative hits for a horizon of length T . Thus,

all of the above policies have Ω(T ) regret. This is surprising as the LRU and FIFO policies are

known to have a finite competitive ratio [6]. To the best of our knowledge, no uncoded caching

policy with sub-linear regret is known in the literature.

Achievability with uncoded caching: Making use of the theory of Online Structured Learning

[18], we now propose a simple Follow the Perturbed Leader (FTPL)-based uncoded caching policy,

which achieves O(
√
T ) expected regret against an oblivious adversary. The FTPL policy maintains

a cumulative running count of the number of times a file was requested so far (by Assumption 3,

this feedback is immediate). This count is then perturbed by adding i.i.d. Gaussian noise of zero

mean and an appropriate variance to each of the count values. Finally, at each time slot, the top

C files with the highest perturbed count are loaded to the cache. Note that, here we implicitly

exploit the freedom granted by Assumptions 1 and 2. The FTPL policy is formally described below

in Algorithm 1.
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Algorithm 1 FTPL policy for Uncoded Caching

1: count← 0,η ← 1

(4π logN )1/4

√
T
C

2: for t = 1 to T do
3: count← count + xt
4: Sample γt ∼ N(0, IN×N )
5: perturbed count← count + ηγt
6: Sort perturbed count in decreasing order and load the top C files in the cache.

7: end for

Theorem 3 (Achievability with uncoded caching). In the single cache setting, the FTPL
uncoded caching policy achieves the following upper bound for expected regret (the expectation is
taken over the randomness of the algorithm)

E{γt }t≥1
(
RFTPL
T ) ≤ 1.51(logN )1/4

√
CT .

The proof of Theorem 3 follows a similar line of arguments as the proof of Theorem 1 of [18].

However, in this paper, we tighten the regret upper bound of [18] further by a factor of O(
√
C).

This improvement follows by taking into account the constraint that only one file is requested

per slot and any feasible cache configuration respects a natural box constraint. This tightening is

essential in order to match the FTPL upper bound with the lower bound given in Theorem 2. The

details of the proof are given in Section 7.3.

The lower bound of Theorem 2 shows that FTPL is regret-optimal up to poly-logarithmic factors in

the library size N . In the following, we show that this extra poly-log factor may be removed if we

allow coded caching.

Achievability with coded caching: Making use of Assumption 5, in [51], Corollary 2, the authors

showed that an Online Gradient Ascent (OGA)-based single-server caching policy, serving one

file-request per slot, achieves a regret of value at most

√
2CT . To avoid repetition, a description of

the general version of the OGA policy in the context of network caching will be given in Section 4,

which subsumes the single cache case.

3 CACHING IN A CONTENT DISTRIBUTION NETWORK
We now begin investigating the problem of optimal caching in a Content Distribution Network

(CDN). In this problem, there is a set of geographically distributed users who periodically request

files to a content provider (e.g., Netflix). The content provider maintains a global network of

data centers, each caching some files up to its capacity. A user’s file-request may be served by

its neighboring data centers if the requested file exists in any of the neighboring caches. This

client-server architecture gives rise to a bipartite content distribution network with the set of users

and the set of caches constituting its two parts [60]. For a detailed case-study on the above caching

architecture, including the global distribution of the data centers and performance measurement in

the context of Netflix CDN, please refer to [12]. In the following Section, we show how the tools

and techniques developed in the previous section for a single cache may be generalized to address

this more challenging problem.
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Cache capacity = C

Server

|I | users |J | caches

Connections E

Fig. 2. Schematic of a Bipartite Caching Network

3.1 System Model
We now formalize the above system model for caching in a CDN. A set of users I = {1, 2, . . . , I } is
connected to a set of caches J = {1, 2, . . . , J } in the form of a bipartite network. For simplicity, we

assume that the caches are homogeneous in the sense that each cache has the same storage capacity

C . As before, the library size (i.e., the number of all possible files) N is assumed to be sufficiently

large. The connection between the users and the caches is represented by the bipartite graph

(I,J , E). The set of caches connected to a user i ∈ I is denoted by ∂+(i) ≡ {j ∈ J : (i, j) ∈ E}.
Similarly, the set of users connected to a cache j ∈ J is denoted by ∂−(j) ≡ {i ∈ I : (i, j) ∈ E}. The
in-degree of the cache j is defined as dj ≡ |∂

−(j)|, j ∈ J . For the sake of simplicity, we assume the

network to be right d-regular, i.e., dj = d,∀j ∈ J . See Figure 2 for a schematic.

Each user requests one file per time slot. Each file-request may be served by any (one or more)

neighboring caches. As before, the file-request generated by a user i at time t is one-hot encoded by
an N -dimensional binary vector x it , with the interpretation that x it f = 1 if and only if the f th file is

requested by the user i at time t . The cache configuration of the jth cache at time t is represented

by the N -dimensional vector y j
t , with each component denoting the fraction of the corresponding

coded file cached. The cache configuration yt must always satisfy the cache-capacity constraints.

Thus, the set of all feasible cache configuration YJ is given by:

YJ =

{(
y j , j ∈ J

)
:

N∑
f =1

y jf ≤ C,∀j ∈ J , 0 ≤ y ≤ 1
}
. (14)

For uncoded caching, y jf t ∈ {0, 1}, ∀j, f , t . Assumptions from Section 2.3 continue to apply.

3.2 Reward and Regret
For content distribution networks, it will be useful to distinguish between elastic and inelastic
contents, as defined below. Making this distinction is essential due to the possibility that, in a

caching network, the same content may be cached and retrieved from more than one cache at a

time. Recall that, for rateless codes, it is only the total number of received encoded symbols that

determine the decoding quality.

Elastic contents: We call a content to be elastic if receiving multiple layers (i.e., resolutions) of
the same content improves its overall utility for the users. Examples of elastic contents include

multi-bitrate video files for adaptive streaming [27], [23], multi-resolution HD videos [33], and
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erasure-coded files in fault-tolerant distributed file systems, such as Hadoop [21], [62]. In this

setting, an incoming file request x it from the ith user can be satisfied by fetching and combining

parts of the cached layers of contents from different neighboring caches j ∈ ∂+(i). Accordingly, for
elastic contents, we define the one-slot reward to be the aggregate of the cache-hits at that slot, i.e.,

qelastic(xt ,yt ) ≡
∑
i ∈I

x it ·

( ∑
j ∈∂+(i)

y j
t

)
. (15)

Hence, a user’s utility increases linearly as she receives more layers of the requested content from

different neighboring caches.

Inelastic contents: We call a content to be inelastic if the content has only a single layer (resolution),
and a user is fully satisfied if she is able to retrieve the original content. Popular examples of inelastic

contents include traditional webpages, databases, documents, and single resolution images. Similar

to the elastic case, if the files are encoded by rate less MDS codes, a request from a user may be

satisfied by combining different fractional parts of the content (from different neighboring caches),

with the fractions adding up to unity. We define the one-slot reward for inelastic content to be

qinelastic(xt ,yt ) ≡
∑
i ∈I

x it ·min

{
1,
( ∑
j ∈∂+(i)

y j
t
)}
, (16)

where 1 is the all-one vector, and the min(·, ·) operator outputs a vector whose components are the

pointwise minimum of the corresponding components of the arguments. In comparison with the

definition in Eqn. (15), the min(1, ·) operator in Eqn. (16) takes into account the fact that receiving

multiple fractions of an inelastic content, summing up to more than one, does not add additional

utility. Hence, unlike the elastic contents, inelastic contents have bounded rewards. We note that

the reward in Eqn. (16) coincides with the utility definition in Eqn. (13) of [51]. The regret of any

caching policy is defined exactly in the same way as in the single cache case via Eqns. (4) and (5).

3.3 Achievability for Caching Networks
In the following, we describe a simple and distributed gradient-based coded caching policy that

achieves O(
√
T ) regret in both elastic and inelastic settings. We then propose an extension of

the Follow-the-Perturbed-Leader-based uncoded caching policy given in Algorithm 1, which also

achieves near-optimal regret in the elastic setting.

Achievability with coded caching [51]: Let q(x,y) be a generic one-slot reward function, which is

concave in the cache-configuration vector y (e.g., q(·, ·) could be chosen to be either qelastic(·, ·) or
qinelastic(·, ·)). Let дt be a supergradient of q(xt ,y) at y = yt . The paper [51] describes the following
Online Gradient Ascent (OGA)-based caching policy: starting from any initial feasible configuration

y0 ∈ YJ , iterate as follows:

yt+1 = ΠYJ
(
yt + ηдt

)
, (17)

where YJ is the set of all feasible cache configurations given in Eqn. (14), ΠYJ (·) is the Euclidean

projection operator on the set YJ , and η > 0 is an appropriate step-size parameter. For the single

user- single cache setting of Section 2, we simply set |I | = |J | = 1.

Distributed implementation: The OGA-based caching policy can be implemented at each cache in

a distributed fashion with locally available information only. This is true because

(1) A separable supergradient дt for both the objective functions qelastic(·, ·) and qinelastic(·, ·)may

be obtained, such that the gradient ascent steps in Eqn. (17) can be carried out locally. For an

expression of such a supergradient, see Eqn. (30).
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(2) Since the cache capacity constraints are separable for different caches, the projection operation

ΠYJ (·) may be carried out separately for each cache as ΠYJ (y) = {ΠY(yj ), j ∈ J}, where
Y is the single cache constraint set given by Eqn. (1).

We have the following achievability result for OGA:

Theorem 4 (Achievability with coded caching [51]). For both elastic and inelastic con-
tents, the OGA-based caching policy (17) with step size η =

√
2C

d
√
T
, achieves the following upper-

bound on regret for a right d-regular bipartite network:

ROGA
T ≤ d |J |

√
2CT .

Proof outline: In this proof, we appeal to Theorem 2 of [51], which gives a generic regret upper

bound for the OGA-based caching policy. We conclude the proof of Theorem 4 by computing the

diameter of the feasible set YJ subject to the cache-capacity constraints. Note that we can not

directly use the regret upper-bound given in Theorem 3 of [51] because there the authors make an

assumption that only one user out of |I | users may request for contents at a slot. In our model,

there is no such restriction so that all |I | users may simultaneously request for contents at a slot.

Please refer to Section 7.4 for a proof of Theorem 4.

Achievability with uncoded caching: For uncoded caching in a bipartite network, we propose a

simple extension of the FTPL policy given in Algorithm 1 for a single cache. In this extension, each

of the |J | caches independently implements the FTPL policy irrespective of whether the content is

elastic or inelastic. We have the following achievability result for elastic contents:

Theorem 5 (Achievability with uncoded caching for elastic contents). For elastic

contents, the FTPL caching policy with the noise parameter η = d
(4π logN )1/4

√
T
C yields the following

upper-bound on expected regret for a right d-regular bipartite network:

E{γt }t (R
FTPL
T ) ≤ 1.51(logN )1/4d |J |

√
CT .

Please refer to Section 7.5 for a proof of Theorem 5.

3.4 Converse for Caching Networks
The question of regret-optimality of the OGA policy (17) for caching networks was left open in

[51] due to lack of known lower bounds. In the following, we prove tight universal lower bounds

for the regret, which applies to both coded and uncoded caching.

Theorem 6 (Lower bound for elastic contents). For caching elastic contents in a bipartite
network in the above set up with N ≥ 2C , the regret of any online caching policy π is lower
bounded as:

RπT ≥ d |J |

√
CT

2π
− Θ(

1

√
T
), ∀T ≥ 1.
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Proof outline: In this proof, we construct a common randomized file request sequence {Xt }t ≥1,

which is identical for each user. In other words, all users request the same random file at each slot.

Thus, unlike most other applications of the probabilistic method, which usually proceeds with i.i.d.

random variables, we consider a set of mutually dependent file request sequence. The expected
reward accrued by any caching policy is then obtained by using the statistical symmetry of the

file requests and the linearity of expectation. Finally, the static optimal caching configuration is

identified, and the reward accrued by the optimal stationary policy is lower bounded by appealing

to Lemma 1. Combining the above two results yields the regret lower bound. Please refer to Section

7.6 for the complete proof of Theorem 6.

The following theorem gives regret lower bound for caching inelastic content in a bipartite

network.

Theorem 7 (Lower bound for inelastic contents). For caching inelastic contents in a
bipartite network in the above set up with N ≥ 2C |J |, the regret of any online caching policy π
is lower bounded as:

RπT ≥ d

√
|J |CT

2π
− Θ(

1

√
T
), ∀T ≥ 1.

Proof outline: The principal difficulty in extending the argument from the proof of Theorem

6 to the inelastic case is the presence of non-linearity in the reward function (16) in the form of

min(·, ·) operator. As a result, it becomes difficult to analyze the expected reward accrued by the

optimal stationary caching configuration. To get around this obstacle, we lower bound the reward

of the optimal caching configuration with the help of a carefully constructed sub-optimal caching

configurationY⊥. Interestingly, under the caching configurationY⊥, the non-linearity of the reward
function vanishes, which leads to tractable analysis. Similar to the proof of Theorem 6, this proof

also uses an identical (i.e., dependent) file request sequence across all users. Please refer to Section

7.7 for the complete proof of Theorem 7.

Tightness: Comparing the regret upper bounds in Theorems 4 and 5 with the lower bounds in

Theorems 6 and 7, we see that, for elastic contents, the OGA and FTPL network caching policies are
regret-optimal up to a constant and poly-log factor respectively. For inelastic contents, the OGA

policy is regret-optimal up to a factor of O(
√
|J |).

4 EXPERIMENTS
Dataset description: In this section, we compare the performance of the existing caching policies

with the proposed FTPL policy using a popular and stable benchmark - MovieLens 1 M dataset
[1, 29]. This dataset contains ∼ 1 M ratings for N ∼ 3700 movies, along with the timestamps of the

ratings. The ratings were given by ∼ 6000 unique users. For our experiments, we assume that the

users request movies from a CDN (such as Netflix) in the same chronological order as the recorded

timestamps of the ratings. Hence, it is only the sequential order of the time-stamps of the requested

files that matters in our experiment. We ignore the actual time-stamps and file sizes. A histogram

of the movie request frequencies by taking all users together is shown in Fig. 3.

Experimental Setup: Following the standard industry practice, the cache capacityC of each cache

is set to be a fixed α fraction of the total library size N , where we take α = 0.01. For the bipartite
caching scenario, we assume that a total of |I | = 10 users are connected to |J | = 4 caches. Each

cache has in-degree d = 3. The first cache is connected to user 1, 2, and 3, the second cache is
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Fig. 3. Histogram of the frequency of requests of the MovieLens 1M dataset

connected to user 4, 5, and 6, the third cache is connected to user 7, 8, and 9, and the fourth cache is

connected to user 1, 3 and 10. The entire dataset with ∼ 1M entries is uniformly divided into 10

disjoint blocks. Each user is allocated one block of the dataset. It is assumed that each user makes

requests serially from its allocated block in the chronological order.

Results: The time-averaged regrets for different caching policies in the single cache setting and

the bipartite network setting for both elastic and inelastic contents are plotted in Figure 4 (see the

following page). From the plots in Figures 4 (a), 3 (b), and 3 (c), we conclude that the FTPL and LFU
policies have the best performance in terms of average regret uniformly in all cases, and there is

hardly any noticeable difference between their performance for large enough T . These two policies

also perform very close to the theoretical lower bounds (corresponding to the worst-case request

sequence). On the other hand, we find that the LRU policy has the worst performance, followed by

OGA, which performs only marginally better. It is quite surprising to find that the uncoded caching

policy FTPL outperforms the coded caching policy OGA in all scenarios. Figure 5 compares the

time-averaged hit-rates of different policies (up to time T = 10
5
slots) for different cache-sizes in

the single cache setting. It can be seen from the plot that the FTPL policy achieves a hit-rate of

80% when the cache-size is only 30% of the library size. At this cache-size, the LRU policy achieves

a hit-rate of ∼ 70%. Figure 6 shows the variation of the average regret as the cache capacity is

increased from 1 percent to 10 percent of the library size N for a fixed timeT = 5× 104. These plots

confirm that the regret increases with the cache size. However, we find that the increase in the

regret is smallest for the LFU and FTPL policies followed by the OGA and the LRU policy.

4.1 Experiments with synthetic data - Cost-of-Caching vs Hit-Rate
The principal focus of this paper is on the fundamental limits of caching from an online learning

point-of-view. Consequently, by following the assumption (2) of Section 2.3, we did not associate

any cost with the downloading of new content to the cache at every slot so far. However, from

an operational point-of-view, this is quite a strong assumption as most flash-based CDN caches

(e.g., used by Akamai, Netflix) wear out very quickly with repeated read-writes. Intuitively, there

should be a trade-off between the Cost of Caching
3
and Hit-rates. In this Section, we argue that

our algorithms are flexible enough to admit a smooth compromise between these two.

3
Formally, we define the Cost-of-Caching at a slot to be the number of new files downloaded to the cache from the central

server.
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Fig. 4. Comparison among the caching policies in terms of time-averaged regret RT ({xt })
T (viz. Definition

(4)) for (a) single cache (b) bipartite caching network with elastic contents, and (c) bipartite caching network
with inelastic contents, where the file request sequence {xt }t ≥1 is obtained from the MovieLens dataset. The
bipartite network has 10 users and 4 caches, each connected to 3 users. The capacity of each cache is chosen
to be 1 percent of the library size in all cases.

To motivate this trade-off, let us first consider the greedy version of the proposed FTPL policy,

which does not add any noise to the frequency counts (i.e., η = 0). In the literature, this is also

known as the Follow the Leader (FTL) policy. Since a user requests only one file at a time, the

Hamming distance between two consecutive frequency count vectors is at most one. Hence, the

FTL policy needs to cache at most one new file per slot. Thus, the cost of caching under the FTL
policy is minimal. Unfortunately, it is well-known in the literature that the FTL policy suffers from

linear regret [14]. This observation motivates us to use the FTPL policy with some non-zero noise.

By varying the variance of the added Gaussian noise, we can strike a balance between the cost of

caching and the hit rates of the caching policy.

To experimentally demonstrate this trade-off, we consider a single cache setting with library

size N = 5 and cache capacity C = 2. The file request sequence is periodic and is given by
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Fig. 5. Variation of the cache hit-ratios for different policies up to the timeT = 10
5 for the MovieLens dataset

in the single cache setting. The FTPL policy achieves a hit rate of 80% when the cache-size C is only 30% of
the library size N .
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Fig. 6. Variation of time-averaged regret as a function of the cache-capacity (C) in the single cache setting for
different caching policies

{5, 4, 3, 2, 1︸     ︷︷     ︸, 5, 4, 3, 2, 1︸     ︷︷     ︸, 5, 4, . . .}. Clearly, classical policies, e.g., LRU, LFU, have zero hit-rate on this

request sequence. Figure 7 shows the variation of time-averaged cost of caching and hit-rate as a

function of the noise level (standard-deviation) η. It is evident from the plots that (1) the FTL policy

(which corresponds to η = 0) has hit-rate precisely zero, (2) hit-rate increases with increasing

noise-level (η). However, this increased hit-rate comes at the expense of a higher cost of caching.

5 CONCLUSION AND FUTUREWORK
In this paper, we obtain tight sub-linear regret lower bounds for the online caching problem for

single caches and bipartite caching networks. In the process, we derive a key technical result on

the balls-into-bins problem and utilize the result in deriving all our lower bounds. We also propose

a new randomized caching policy, called FTPL, which is shown to be both sound in theory and

superior in practice. We envision the following future research directions stemming from this work:
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Fig. 7. Variation of time-averaged Cost-of-Caching and Hit-rate with the noise level η.

(1) As an immediate follow-up, it will be interesting to narrow down the O(
√
|J |) gap between the

lower and upper bounds on regret for inelastic contents in a bipartite caching network. Moreover,

obtaining a regret guarantee for the FTPL policy for bipartite networks with inelastic contents

would be nice. Relaxing Assumption (6) and allowing a bounded number r ≥ 1 requests per user

per slot will enhance the scope of the results. (2) We defined the reward functions primarily with

the online performance of the caching policies (i.e., hit rates) in mind. In particular, our reward

definitions do not take into account the system cost associated with cache replacements at every

slot (viz. Experiments in Section 4.1). It would be interesting to find the optimal trade-off between

the hit-rates and the cost of cache replacements. (3) A variation of the caching problem arises in the

context of inventory management where, instead of digital files, physical commodities are stored

in the caches (e.g., retail stores). Requests for the commodities arrive sequentially. The requested

commodities, which are currently present in the cache, are immediately removed from the cache

(e.g., sold). Hence, unlike in our setting, there is no scope of “coding”, and it would make sense

to cache multiple copies of the same commodity at the same slot, subject to the cache capacity

constraints (c.f., Eqn. (1)) . The performance of FTPL-like randomized uncoded caching policies

will be interesting to investigate in this setup. (4) Finally, it will also be interesting to go beyond

the single-hop setting of bipartite caching networks and design a regret-optimal joint routing and

caching policy for multi-hop CDNs [40, 50].
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7 PROOF OF THE RESULTS
7.1 Proof of Lemma 1
We index the bins sequentially as 1, 2, . . . , 2C . Next, we logically combine every two consecutive

bins {(2i − 1, 2i)}, 1 ≤ i ≤ C, to obtain C Super bins (See Figure 8). Let us denote the (random)

number of balls in the ith super bin by Xi , j = 1, 2, . . . ,C . Conditioned on the r.v. Xi , the number

of balls in the corresponding bins: 2i − 1 and 2i are jointly distributed as (Z ,Xi − Z ), where Z is

a binomial random variable with parameter (Xi ,
1

2
). Let Hi denote the maximum number of balls
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Fig. 8. Illustrating the construction of Super bins

between the corresponding bins 2i − 1 and 2i . Then, as shown in the proof Theorem 1, when Xi > 0:

E(Hi |Xi ) ≥
Xi

2

+

√
Xi

2π
−

1

2

√
2πXi

, ∀1 ≤ i ≤ C . (18)

SinceMC ≥
∑C

i=1Hi , we have

E(MC )

≥ E

( C∑
i=1

Hi

)
=

C∑
i=1

E(Hi )
(a)
= CE(H1)

(b)
= CE

(
H11(X1 > 0)

)
(c)
= CEE(H11(X1 > 0)|X1)

(d )
≥ CE

(
X11(X1 > 0)

2

+

√
X1

2π
1(X1 > 0) −

1(X1 > 0)

2

√
2πX1

)
(e)
=

C

2

E(X1) +
C
√
2π
E(
√
X1) −

C

2

√
2π
E

(
1(X1 > 0)
√
X1

)
, (19)

where the equality (a) follows from the fact that the random variables {Hi }
C
i=1 have identical

distribution. For equation (b), we write

H1 = H11(X1 = 0) + H11(X1 > 0).

Now, observe that if X1 = 0 then H1 = 0 a.s. Hence, almost surely, we have H1 = H11(X1 > 0).

The equation (c) follows from the tower property of conditional expectation, the inequality (d)

follows from the bound (18), and the equality (e) follows from the facts that X1 = X11(X1 >
0),
√
X1 =

√
X11(X1 > 0). The Lemma now follows by using the bounds on moments of the

binomial distribution as computed next.

Bounding the Expectations in Eqn. (19): For bounding the middle term in Eqn. (19), consider the

factorization [28]:

√
x −

(
1 +

x − 1

2

−
(x − 1)2

2

)
=

√
x

2

(
√
x − 1)2(

√
x + 2).

The RHS is non-negative for any x ≥ 0. Thus, we have the following algebraic inequality:

√
x ≥ 1 +

x − 1

2

−
(x − 1)2

2

, ∀ x ≥ 0.
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Replacing the variable x with the random variable
X1

E(X1)
point wise, we have almost surely,√

X1

E(X1)
≥ 1 +

X1

E(X1)
− 1

2

−
(

X1

E(X1)
− 1)2

2

.

Taking expectation of both sides, the above yields

E(
√
X1) ≥

√
E(X1)

(
1 −

Var(X1)

2(E(X1))
2

)
. (20)

Finally, recall that X1 ∼ Binom(T , 1C ). Hence, E(X1) =
T
C and Var(X1) = T

1

C (1−
1

C ) ≤
T
C . Using this,

Eqn. (20) yields the following lower bound

E(
√
X1) ≥

√
T

C
−
1

2

√
C

T
. (21)

For bounding the last term in Eqn. (19), we write

1(X1 > 0)
√
X1

≤ 11
(
X1 ≤

T

2C

)
+

√
2C

T
.

Recall that X1 ∼ Binom(T , 1C ). Taking expectation of both sides of the above inequality, we have

E

(
1(X1 > 0)
√
X1

)
≤ P(X1 ≤

1

2

E(X1)) +

√
2C

T
.

The probability term in the above expression may be bounded using Chebyshev’s inequality as

follows:

P
(
X1 ≤

1

2

E(X1)
)
= P

(
X1 − E(X1) ≤ −

1

2

E(X1)
)

≤ P
(
|X1 − E(X1)| ≥

1

2

E(X1)
)

≤
4Var(X1)

(E(X1))
2
= 4

C − 1

T

Taking the above bounds together, we obtain

E

(
1(X1 > 0)
√
X1

)
≤

√
2C

T
+
4C

T
. (22)

Finally, combining Eqns. (19), (21), and (22) together, we obtain

E(MC ) ≥
T

2

+

√
CT

2π
−
(
√
2 + 1)C3/2

2

√
2πT

−

√
2

π

C2

T
. ■

7.2 Proof of Theorem 2
To lower bound the regret RπT in equation (7), as in Section 2.4, we consider a random file request

sequence {Xt }t ≥1, each sampled independently and uniformly at random from the set of first

2C unit vectors {ei , 1 ≤ i ≤ 2C} of dimension N 4
. In other words, at every time slot, the user

independently requests a random file from the set of first 2C files uniformly at random.

4
Recall that, the unit vector ei has one at its i th coordinate and zeros everywhere else.
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The expected reward obtained by any caching policy, given by the second term in Eqn. (4), is

now easy to evaluate:

E

( T∑
t=1

Yt ·Xt

)
(a)
=

T∑
t=1

Yt ·
(
EXt

)
=

1

2C

T∑
t=1

2C∑
k=1

Ytk
(b)
≤

T

2

, (23)

where, in (a), we have used the fact that the caching decision Yt made at time t is independent of
the incoming file request Xt , and in (b), we have made use of the cache-capacity constraint (1):

2C∑
k=1

Ytk ≤
N∑
k=1

Ytk ≤ C,

in addition to the fact that

E(Xtk ) =

{
1

2C , ∀1 ≤ k ≤ 2C

0 o.w.

Note that, for any given file request sequence {xt }Tt=1, the optimal offline stationary cache configu-

ration vector is obtained by caching the most popularC files. Hence, the optimal vectory∗ ∈ [0, 1]N ,
corresponding to the first term in Eqn. (4) is obtained by simply setting the coordinates corre-

sponding to the maximum C coordinates of the N -dimensional vector

∑T
t=1 xt to unity. Given the

distribution of the file request sequence, it immediately follows that the reward accrued by the

optimal stationary policy Y ∗ ·
∑T

t=1Xt is identically distributed to the total number of balls in

the most heavily loaded C bins when a total of T balls are randomly thrown into 2C bins. Finally,

invoking Lemma 1, we have

E

(
Y ∗ ·

T∑
t=1

Xt

)
≥
T

2

+

√
CT

2π
− Θ(

1

√
T
). (24)

Combining equations (23) and (24), we obtain the following lower bound for regret in the single

cache setting:

RT ≥ E{Xt }
T
t=1

(
Y ∗ ·

T∑
t=1

Xt −

T∑
t=1

Yt ·Xt

)
≥

√
CT

2π
− Θ(

1

√
T
). ■

7.3 Proof of Theorem 3
Our proof follows a similar line of arguments as the proof of Theorem 1 of [18]. However, we

improve the regret upper bound by a factor of O(
√
C). This additional improvement results from

making use of the constraint that only one file is requested at every slot. The notations of [18] are

slightly altered in order to remain consistent throughout the paper.

Let the set Y denote the set of all possible uncoded caching configuration in the single cache

setting. Clearly, |Y| =
(N
C

)
. Define the potential function

Φη(x) = Eγ∼N(0,I )

[
max

y∈Y
⟨y,x + ηγ⟩

]
.

Also, denote the cumulative file request arrivals to the cache up to time t − 1 by Xt =
∑t−1
τ=1 xτ with

X1 = 0. Then, as shown in Eqn. (3) of [18], the expected regret of the FTPL policy in Algorithm 1
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with noise variance η2 is upper bounded as
5

E(RT ) ≤ Φη(X1) +
1

2

T∑
t=1

⟨xt ,∇
2Φη(x̃t )xt ⟩, (25)

for some x̃t connecting the line segment Xt and Xt+1. Following standard notation, the operator

⟨·, ·⟩ denotes the inner-product of the two arguments, and the operator ∇2(·) denotes the Hessian

of the argument.

Next, we bound each of the above two terms separately. The first term may be bounded in the same

way as in [18]:

Φη(X1) ≤ η

√
2C log

(
N

C

)
≤ Cη

√
2 logN ,

where the last inequality follows from the fact that

(N
C

)
≤ NC

. Since only one file is requested at

every slot, the quadratic form above may be upper bounded as

⟨xt ,∇
2Φη(x̃t )xt ⟩ ≤ max

i ,x

(
|∇2Φη(x)

��)ii . (26)

Moreover, following Lemma 7 of [2], we have that

(∇2Φη(x)
)
i j =

1

η
E

[
ŷ(x̃t + ηγ )iγj

]
,

where ŷ(z) ∈ argmaxy∈Y ⟨y, z⟩. Hence, using Jensen’s inequality we have that

(
��∇2Φη(x)

��)ii ≤ 1

η
E

[
|ŷ(x̃t + ηγ )i | |γi |

]
(a)
≤

1

η
E
[
|γi |

] (b)
=

1

η

√
2

π
, (27)

where the inequality (a) follows from the fact that for all y ∈ Y, we have yi ∈ {0, 1}, and the

equality (b) follows from the fact that γi ∼ N(0, 1). Hence, substituting the above bounds in Eqn.

(25), we have the following upper bound on expected regret under the FTPL caching policy:

E(RT ) ≤ Cη
√
2 logN +

T

η
√
2π
.

Finally, choosing η = 1

(4π logN )1/4

√
T
C , yields the following regret upper bound for the FTPL policy:

E{γt }t (R
FTPL
T ) ≤ 1.51(logN )1/4

√
CT . ■

7.4 Proof of Theorem 4
From Eqn. (15), we know that qelastic(x,y) is linear (and hence, concave) in the cache-configuration

vector y. Moreover, since the pointwise minimum of linear functions is concave [11], it follows

from Eqn. (16) that the reward function qinelastic(x,y) is also concave in the cache-configuration

vector y. To obtain a regret upper bound for the the OGA algorithm (17), we appeal to Theorem 2

of [51], which states that with an appropriate choice of the step-size parameter η,

ROGA
T ≤ diam(YJ)L

√
T , (28)

where diam(YJ) denotes the Euclidean diameter [57] of the set YJ defined in (14), and L is an

upper-bound for the 2-norm of the (super) gradient of the reward function.

5
The signs are flipped as we are in the rewards maximization setting, as opposed to the loss minimization setting of [18].
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For bounding the diameter, consider any two vectors y and z from the set YJ . We have

| |y − z | |2
2
=

∑
j ∈J

N∑
f =1

(y jf − z
j
f )

2

(a)
≤

∑
j ∈J

N∑
f =1

|y jf − z
j
f |

(b)
≤

∑
j ∈J

N∑
f =1

y jf +
∑
j ∈J

N∑
f =1

z jf
(c)
≤ 2CJ ,

where the inequality (a) follows from the fact that |y jf − z
j
f | ≤ 1, the inequality (b) follows from

triangle inequality, and finally, inequality (c) follows from the cache-capacity constraints. Since,

the above bound is valid for any two vectors in the set YJ , it follows that

diam(YJ) ≡ sup

y ,z ∈YJ
| |y − z | | ≤

√
2CJ . (29)

Next, we bound the norm of the supergradients of the reward functions. Recall,

qelastic(x,y) =
∑
i ∈I

x i ·
( ∑
j ∈∂+(i)

y j ) .
Hence, we have the following expression for the supergradient of the objective function:(

∇yqelastic(x,y)

) j
f
=

∑
i ∈∂−(j)

x if . (30)

Thus,

| |∇yqelastic(x,y)| |
2

2
=
∑
j ∈J

∑
f

( ∑
i ∈∂−(j)

x if
)
2

. (31)

On the other hand, since x ≥ 0, it follows that the vector ∇yqelastic(x,y) can be taken to be a

supergradient of the concave function qinelastic(x,y)w.r.t. the argumenty. Thus, to obtain the regret

upper bound, it only remains to upper bound the RHS of Eqn. (31). We have:( ∑
i ∈∂−(j)

x if
)
2
(a)
≤ d

∑
i ∈∂−(j)

(x if )
2
(b)
= d

∑
i ∈∂−(j)

x if ,

where the inequality (a) follows from Cauchy-Schwartz inequality and (b) follows from the fact

that each x if ’s are either zero or one. Hence, the RHS of Eqn. (31) is upper bounded as follows:∑
j ∈J

∑
f

( ∑
i ∈∂−(j)

x if
)
2

≤ d
∑
j ∈J

∑
f

∑
i ∈∂−(j)

x if

= d
∑
j ∈J

∑
i ∈∂−(j)

∑
f

x if

(a)
≤ d

∑
j ∈J

∑
i ∈∂−(j)

1 = d2 |J |,

where (a) follows from the facts that each user can request at most one file per slot, and the

network is right d-regular. Hence, for both elastic and inelastic reward functions, the 2-norm of the
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supergradients is upper bounded as

L ≤ d
√
|J |. (32)

Hence, combining Eqns. (28), (29), and (32), we have that

ROGA
T ≤ d |J |

√
2CT . ■

7.5 Proof of Theorem 5
Let R

single

T denote the regret of a single cache under the FTPL caching policy. Due to linearity of the

reward functions for elastic contents, the regret for bipartite network caching may be simply upper

bounded by summing the regret for each of the |J | constituent single caches, i.e.,

RT ≤ |J |R
single

T . (33)

However, note that we can not use the regret upper bound from Theorem 3 to upper bound the

regret of the individual caches, as, unlike the setting of Theorem 3, each individual caches may

receive up to d requests from its neighboring users per slot. Hence, we need to modify the proof of

Theorem 3 to take up to d requests into account. Following the same line of argument as in the

proof of Theorem 7.3, the inequality (26) may be replaced by the following

⟨xt ,∇
2Φη(x̃t )xt )⟩ ≤ d2 max

i , j ,x

(
|∇2Φη(x)

��)i j . (34)

Eqn. (34) follows from the fact that since the number of non-zero terms in xt is at most d (i.e.,
| |xt | |0 ≤ d, | |xt | |1 ≤ d). Finally, proceeding similarly as in Eqn. (27), we conclude that(

|∇2Φη(x)
��)i j ≤ 1

η

√
2

π
, ∀x, i, j .

Plugging in the above in Eqn. (25) results in the following regret bound for the FTPL caching policy:

E(R
single

T ) ≤ Cη
√
2 logN + d2

T

η
√
2π
. (35)

Choosing η = d
(4π logN )1/4

√
T
C , and combining Eqns (33) and (35), we have the following regret

upper bound for the FTPL policy for caching elastic contents in a d-right regular bipartite caching
network:

E{γt }t (RT ) ≤ 1.51(logN )1/4d |J |
√
CT . ■

7.6 Proof of Theorem 6
We prove a slightly general result without assuming the bipartite caching network to be right

d-regular. Let x it be the file request vector from the ith user, and y j
t be the cache configuration

vector of the jth cache selected by the policy π at time t , where i ∈ I, j ∈ J . Hence, due to the

elastic nature of the content, the total rewardGπ
T accrued by the caching policy π is given by Eqn.

(15):

Gπ
T =

T∑
t=1

∑
i ∈I

x it ·
∑

j ∈∂+(i)

y j
t .

Recall that, while computing the regret of a policy π via Eqn. (4), we compare the reward accrued

by the policy π to that of a stationary caching policy π ∗ equipped with the hindsight knowledge

(i.e., π ∗ knows the entire file request sequence {xt }T1 in advance, viz., Eqns. (4)- (5)). Let y j
∗ be the
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optimal stationary cache configuration vector at the server j ∈ J set by the policy π ∗. Then the

reward accrued by the stationary caching policy π ∗ is given by:

Gπ ∗
T =

T∑
t=1

∑
i ∈I

x it ·
∑

j ∈∂+(i)

y j
∗.

Rearranging the terms, we have

Gπ ∗
T =

∑
j ∈J

y j
∗ ·

( ∑
i ∈∂−(j)

T∑
t=1

x it
)
. (36)

Since the jth cache has a total capacity of C , from the above equation, it is clear that the optimal

stationary configuration y j
∗ corresponds to caching the most popular C files requested by all of j’s

in-neighbours taken together. Following the probabilistic method described in Section 2.4, we now

construct a randomized file request sequence which are identical for each user, i.e., all users request
the same random file at every time slot. At time slot t , the file request from the ith user is given
by the vector X i

t = Xt , where the vector Xt is sampled independently and uniformly at random

from the set of first 2C unit vectors {ei ∈ RN , 1 ≤ i ≤ 2C}. With this set up, the expected reward

accrued by the policy π (i.e., the second term in Eqn. (4)) may be evaluated as:

E

( T∑
t=1

∑
i ∈I

X i
t ·

∑
j ∈∂+(i)

Y j
t

)
=

T∑
t=1

∑
i ∈I

∑
j ∈∂+(i)

N∑
f =1

E(Xt f )Y
j
t f

(a)
=

1

2C

T∑
t=1

∑
i ∈I

∑
j ∈∂+(i)

2C∑
f =1

Y j
t f

(b)
≤

1

2C

T∑
t=1

∑
i ∈I

∑
j ∈∂+(i)

C
(c)
=

T

2

∑
j

dj ,

where the equation (a) uses the fact that the random variables Xt and Yt are independent and
E(Xt f ) =

1

2C ,∀t, f . The inequality (b) follows from the fact that each cache has capacity C , and the

equality (c) follows from interchanging the order of the summations.

From Eqn. (36), we can express the expected total reward Gπ ∗
T accrued by the stationary policy π ∗

as:

E(Gπ ∗
T ) =

∑
j ∈J

E(M j
C ),

whereM j
C denotes the sum of the largest C coordinates of the following N -dimensional random

vector:

T∑
t=1

∑
i ∈δ−(j)

X i
t = dj

T∑
t=1

Xt .

Thus, it follows that the random variableM j
C is statistically identical to dj times the total number of

balls in the most occupiedC bins whenT number of balls are thrown independently and uniformly

at random into 2C bins. Finally, appealing to Lemma 1, we have

E(M j
C ) ≥ dj

(
T

2

+

√
CT

2π
− Θ(

1

√
T
)

)
. (37)
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Finally, combining the above, we have the following regret lower bound for caching elastic contents

in a bipartite caching network:

RπT ≥

√
CT

2π

( ∑
j ∈J

dj

)
− Θ(

1

√
T
) = d |J |

√
CT

2π
− Θ(

1

√
T
). ■

7.7 Proof of Theorem 7
We begin our analysis with the following two observations:

(1) From the definition of the reward functions (15) and (16), in general, we have,

qinelastic(x,y) ≤ qelastic(x,y), ∀x,y. (38)

(2) In the special case, when different servers j ∈ J cache different items, i.e., yi · y j = 0,∀i , j,
we have

qinelastic(x,y) = qelastic(x,y), ∀x,y. (39)

Eqn. (39) follows from the fact that in the product x it ·
( ∑

j ∈∂+(i)y
j
t
)
=
∑

j ∈∂+(i) x
i
t · y

j
t , only one of

the dot-product terms could be strictly positive, as different servers cache different items and the

vector x it has only one positive component. Moreover, the value of each dot product is at most one,

as each server stores at most one copy of each file.

With these two observations at hand, we now relate our argument below to the proof of Theorem

6 to obtain a regret lower bound for inelastic contents. Similar to the proof of Theorem 6, we

construct a randomized and identical file request sequence {X i
t ≡ Xt }t ≥1 for each user, where the

random variable Xt is sampled independently and uniformly at random from the set of first 2C |J |
unit vectors {ei ∈ RN , 1 ≤ i ≤ 2C |J |}. Hence, using observation (1) and working similarly as

in Eqn. (37), the expected total reward Gπ
T accrued by any online caching policy may be upper

bounded as

Gπ
T ≤ E

( T∑
t=1

∑
i ∈I

X i
t ·

∑
j ∈∂+(i)

Y j
t

)
≤

T

2|J |

∑
j ∈J

dj =
Td

2

. (40)

Note that, unlike the elastic setting, due to the presence of the min operator in the reward function

(16), obtaining an optimal cache configuration vector Y ∗ is non-trivial in the inelastic setting.

However, since we only require a lower bound to the total expected reward accrued by the optimal

static policy π ∗, any suitably constructed sub-optimal caching configuration will serve the purpose,

provided we can evaluate its reward. Towards this end, in the following, we construct an N |J |
dimensional stationary cache-configuration vector Y⊥ (obtained by stacking the N -dimensional

cache-configuration vectors Y j
⊥ together ∀j ∈ J ) with the property that

Y i
⊥ · Y

j
⊥ = 0, ∀i , j, i, j ∈ J . (41)

The cache-configuration vector Y⊥ is constructed by first sorting the vectorv ≡
∑T

t=1Xt in non-

increasing order. Then, we let the cache configuration Y j
⊥ correspond to the set ofC files from rank

(j − 1)C + 1 to jC . Clearly, the above construction ensures property (41). Let the operator Sv (m,n)
denote the sum of the coordinates running fromm to n of the vector v , sorted in non-increasing

order. With the above construction, since all users make the same file request at each time (i.e.,
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X i
t = Xt ,∀i), we have ∀j ∈ J :

Y j
⊥ ·

( ∑
i ∈∂−(j)

T∑
t=1

X i
t

)
= dY j

⊥ ·v

= dSv

(
(j − 1)C + 1, jC

)
.

(42)

Finally, the reward accrued by the optimal stationary policy π ∗ may be lower-bounded as:

Gπ ∗
T

(a)
≥ E

( ∑
j ∈J

Y j
⊥ ·

( ∑
i ∈∂−(j)

T∑
t=1

X i
t
) )

(b)
=

∑
j ∈J

E

(
Y j
⊥ ·

( ∑
i ∈∂−(j)

T∑
t=1

X i
t
) )

(c)
= d

∑
j ∈J

E

(
Sv

(
(j − 1)C + 1, jC

) )
= dE

( ∑
j ∈J

Sv
(
(j − 1)C + 1, jC

) )
= dE

(
Sv (1, |J |C)

)
(d )
≥

Td

2

+ d

√
|J |CT

2π
− Θ(

1

√
T
), (43)

where the inequality (a) follows from Eqn. (39) of observation 2, the equation (b) follows from the

linearity of expectation, and the inequality (c) follows from Eqn. (42). Finally, we realize that the

random variable Sv (1, |J |C) is distributed as the total load of the most loaded |J |C bins when a

total of T balls are thrown uniformly at random to 2|J |C bins. Hence, the inequality (d) follows

from an application of Lemma 1. Finally, combining Eqns. (40) and (43), we have

RπT ≥ Gπ ∗
T −G

π
T ≥ d

√
|J |CT

2π
− Θ(

1

√
T
). ■
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8 APPENDIX
8.1 Calculations for the Mean Deviation bound of Theorem 1, Eqn. (12)
We recall Robbin’s form of Stirling’s formula [55], whichwill be useful in obtaining a non-asymptotic

bound for regret.

√
2πnn+

1

2 e−ne
1

12n+1 ≤ n! ≤
√
2πnn+

1

2 e−ne
1

12n . (44)

Consider the following two possible cases.

Case I: T is even
In this case, we lower bound the Mean absolute deviation in Eqn. (11) as follows:
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T

2

| =
2

2
T+1

(
⌊
T

2

⌋ + 1
) ( T

⌊T
2
⌋ + 1

)
=

1

2
T

T !(T
2
)

(T
2
)!(T

2
)!

(a)
≥

1

2
T

1

√
2π
(
T

2

)
TT+ 1

2

(T
2
)T+1

e
1

12T+1−
1

3T

=

√
T
√
2π

e−
9T+1

3T (12T+1)

(b)
≥

√
T

2π
−

9T + 1

3

√
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where the inequality (a) follows from the bound (44) and the inequality (b) follows from the fact

that e−x ≥ (1 − x) for all x ∈ R. Using the fact that
9T+1
12T+1 < 1 for all T > 0, the mean deviation can

be lower bounded as:

E|Z −
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√
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√
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(45)

Case II: T is odd
In this case, the binomial coefficient

( T
⌊ T
2
⌋+1

)
may be lower bounded as follows:(
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Also, for T ≥ 3

1
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This gives us the following lower bound(
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⌋ + 1

)
≥
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√
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T

T + 1
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1

2T
).

For T = 1, the inequality holds good by direct inspection. Hence, the mean deviation from Eqn.

(11) is lower bounded as
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Finally, combining equations (45) and (46) together, we have the following lower bound for all

T ≥ 1

E|Z −
T

2

| ≥

√
T

2π
−

1

2

√
2πT
,

which verifies Eqn. (12).

Received January 2020; revised February 2020; accepted March 2020

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 25. Publication date: June 2020.


	Abstract
	1 Introduction and Related work
	2 Single Cache
	2.1 System Model
	2.2 Performance metrics
	2.3 Standing Assumptions
	2.4 Regret lower bounds - preliminaries
	2.5 Regret lower bound for unit-sized cache
	2.6 Lower bound for caches of an arbitrary size
	2.7 Achievability

	3 Caching in a Content Distribution Network
	3.1 System Model
	3.2 Reward and Regret
	3.3 Achievability for Caching Networks
	3.4 Converse for Caching Networks

	4 Experiments
	4.1 Experiments with synthetic data - Cost-of-Caching vs Hit-Rate

	5 Conclusion and future work
	6 Acknowledgement
	7 Proof of the results
	7.1 Proof of Lemma 1
	7.2 Proof of Theorem 2
	7.3 Proof of Theorem 3
	7.4 Proof of Theorem 4
	7.5 Proof of Theorem 5
	7.6 Proof of Theorem 6
	7.7 Proof of Theorem 7

	References
	8 Appendix
	8.1 Calculations for the Mean Deviation bound of Theorem 1, Eqn. (12)


