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Fast and Secure Routing Algorithms for Quantum Key Distribution Networks†

Goal of the talk

We study the QKD problem from a high-level optimal resource allocation
point-of-view.

We will present a network architecture and a routing algorithm that achieves the
capacity of a network while guaranteeing the full security of the transmitted
messages in a standard system model

Our scheme is general, can handle very general traffic flows, and does not depend
on particular scheme used for either the quantum key generation or message
transmission.

The key idea is to suitably modify a throughput-optimal policy proposed by us in
the past to take into account the availability of quantum keys
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Secure message transmission

m

Alice wants to send a secret (binary) message m to Bob over a public channel

Unfortunately, a third-party, Eve can listen in to the transmission

Problem: Design an encryption scheme so that Bob can correctly decode the
message m, but Eve can not

3 / 50



Fast and Secure Routing Algorithms for Quantum Key Distribution Networks†

Symmetric Key Encryption: One Time Pad

m ⊕ k

k k

Assume that both Alice and Bob hold a shared secret key k of the same length as
the message m. Eve does not have the key.

Alice transmits the message m′ = m ⊕ k over the classical public channel.

Bob decodes by XORing the received message with k
(m′ ⊕ k = (m ⊕ k) ⊕ k = m).

Information Theoretically secure.

Problem: How to establish the shared secret key k?
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Sharing Secret keys: Quantum Key Distribution (QKD)

Project leftover Stu↵. Unused

vishnubeji

May 2020

Quantum Device Quantum Device

Quantum Link

m

k k

m � k
(m � k) � k

= m

Eavesdropper

Transmitter Receiver

Alice Bob

+ +
XOR XOR

Data In Data OutClassical Link

a

b

Classical Link Quantum Link

Data Queue Quantum Key

Queue

dmc

1

QKD link with OTP Protocol

QKD allows remote communication parties to securely share symmetric keys k
Uses Quantum Entanglement or Photon Polarization to agree upon a secret key
sequence in a provably secured fashion

Protocols: BB84, E91 etc.

Two required channels
Key agreement takes place over an authenticated Quantum channel and

the encoded message is transmitted over a Classical channel (free space or optical fiber)

Distance Limited - Fidelity of entanglement drops exponentially with distance

Question: How to securely extend the one-hop QKD scheme to multi-hop networks?
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Trusted Node QKD

We consider a trusted node QKD architecture used in the European SECOQC network
and more recently in Oak-Ridge-Los Alamos QKD Network.

The nodes are assumed to be secured; only the links can be compromised

Packets are sequentially encrypted and decrypted hop-by-hop by each node along
its path

m ⊕ k13 m ⊕ k34

m

m

m ⊕ k10,11

m
m ⊕ k45

A packet can be securely transmitted over a link only if sufficiently many keys are
available.

Problem Statement (informal)

With the instantaneous key availability constraints, how to securely route packets to
achieve the entire secured throughput region of the network?
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System Model

The network is represented by the graph G(V ,E); V denotes the set of nodes. E
denotes the set of edges.

Each edge contains a classical link and an overlay quantum link.

Physical link capacity of the link e is γe . For simplicity, assume that the classical
links don’t interfere.

the algorithms that we are going to present can be extended to wireless networks.

Quantum keys are generated over the link e according to a stochastic counting
process at the rate of ηe .

Packet transmissions are subjected to the key availability and the link capacity
constraints.
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λ21 , λ24 , λ28
λ6i , ...

Network topology G(V , E) 10 / 50
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Traffic Classes

Generalized Flow: Traffic Class c has arrival rate λc , source node Sc , destination
node(s) Dc , where

Unicast: Single source, single destination

S = {s},D = {d}

Multicast: Single source, multiple destinations

S = {s},D ⊂ V \ {s}

Broadcast: Single source, all destinations

S = {s},D = V \ {s}

Anycast: Single source, choice of one among multiple alternative destinations

S = {s},D = v1 ⊕ v2 ⊕ . . .⊕ vk
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Problem Statement

Let R
(c)
π (T ) denote the number of encrypted packets received by all destinations of

class c up to time T under the policy π. The policy π is said to securely support an
arrival vector λ if :

lim inf
T↗∞

R
(c)
π (T )

T
= λc , ∀c ∈ C w.p. 1.

1 Definition (Stability region of a policy)

Λπ(G,η,γ) = {λ : π securely supports λ}

2 Definition (Secure Capacity Region)

Λ(G,η,γ) =
⋃
π∈Π

Λπ(G,η,γ)

Problem (Throughput-Optimal Secured Routing)

Find a policy π∗ ∈ Π s.t.

Λπ(G,η,γ) ⊇ int(Λ(G,η,γ)).
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Characterizing the Secure Capacity Region

Consider the weighted graph Gω such that the edge e has capacity:

ωe = min(γe , ηe), ∀e ∈ E .

The long-term rate of encrypted packet flow over any edge is limited by the
quantum key generation rates and the capacity of the communication link.

Now consider the set of arrival rates Λω(G,γ,η) for which a feasible
flow-decomposition on Gω(G,γ,η) exists, i.e., λ ∈ Λω(G,γ,η) iff there exist a

non-negative scalar λ
(c)
i , associated with the i th admissible route

T
(c)
i ∈ T (c), ∀i , c, such that

λ(c) =
∑

i :T
(c)
i ∈T

(c)

λ
(c)
i , (Multipath flow decomposition) (1)

λe
(def.)

=
∑

(i,c):e∈T (c)
i ,

T
(c)
i ∈T

(c)

λ
(c)
i ≤ ωe , ∀e ∈ E . (Feasibility) (2)
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Characterizing the Secure Capacity Region

Main Theorem

The network-layer secured capacity region Λ(G,η,γ) is given by the set Λω , i.e.

1 [Converse] Λ ⊆ Λω .

2 [Achievability] int(Λω) ⊆ Λ and there exists an admissible policy which
achieves any rate in int(Λω).

The proof of the converse follows from the fact that the long-term rate of
transmission of packets over a link e is upper bounded by ωe = min(ηe , γe).

For proving the achievability part, we design a new dynamic key management and
packet routing policy - our main focus of this talk.
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Recap: Universal Max-Weight Policy (UMW) [Sinha and Modiano 2017]

UMW is a throughput-optimal routing and scheduling policy for generalized traffic
classes. However, it does not consider any key availability constraints as in QKD.

Competitive against the back pressure policy [Tassiulas, Ephremides, ’92]. But
more general as it can route broadcast and multicast flows as well.

Instead of taking control actions based on queue lengths Q(t) (closed-loop
control), UMW is oblivious to the queues (semi open-loop control).

It maintains a virtual queue-length Q̃(t) vector at the source, which are used for making
routing and scheduling decisions.

The virtual queues Q̃(t) correspond to a precedence-relaxed network.

UMW uses some standard combinatorial algorithms (e.g., Shortest Path, MST,
Steiner Tree, MCDS) on a graph weighted by the virtual queues as a subroutine.

Instead of making routing decisions for each packet hop-by-hop, UMW dynamically
chooses the routes of each packet at the sources itself.

Unlike BP, chosen routes are acyclic, which leads to significant delay reduction.
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Design of UMW: Motivation and Insight

Observation: Because of interdependencies, networked queues are harder to
analyze and control.

iid arrival

departure|Q1(t)

Q1(t) Q2(t)correlated
arrivals

IID arrivals to Q1 causes correlated arrivals to Q2

This motivates us to obtain a relaxed system, which is easier to analyze, yet,
preserves some fundamental characteristics we are interested in (e.g., stability).

Question: How to obtain a good relaxation? Which constraints to relax?

Ans: The Precedence Constraints!
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Precedence Relaxation: Example

1

2

3

4
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Precedence Relaxation: Example

1

2

3

4

p

path∗ = {{1, 2}, {2, 3}, {3, 4}}

Precedence: The packet p cannot be physically transmitted over the link 2− 3, until it has been

transmitted over the link 1− 2.
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Precedence Relaxation: Example

1

2

3

4

p

µ12(t)

µ23(t)

µ24(t)

µ13(t)

µ34(t)

Q̃12(t)

Q̃23(t)

Q̃24(t)

Q̃13(t)

Q̃34(t)

p̃

p̃

p̃

Virtual Queues
path∗ = {{1, 2}, {2, 3}, {3, 4}}

Virtual Net: Packets are replicated to the virtual queues as soon as they arrive to the sources.
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Virtual Queues: Operation

Formally,

1 Associate a virtual queue Q̃l (t) with each link l of the graph.

2 Upon packet arrival:

Determine a route T∗(t) (e.g., path, tree, . . . ) for each packet

Immediately inject a new virtual packet to each virtual queue along the route

This amounts to incrementing the queue counters along the route

3 Serve the virtual packets as long as the corresponding virtual queues are non-empty

Don’t care whether the physical queue is empty or not.

Question: How to design a throughput-optimal routing policy: T∗(t)?
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Dynamics of the Virtual Queues Q̃(t)

� Denote the (controlled) arrival to the VQ Q̃e by Ãe(t). Then, the virtual queues
evolve as:

Q̃e(t + 1) =
(
Q̃e(t) + Ãe(t)− ce(t))+, (Lindley recursion) (3)

� Note that, the arrivals to the virtual queues
(
Ãe(t), e ∈ E

)
are explicit control

variables at the source.

� Unlike the original system, given the controls, the virtual queues are independent of
each other. This makes the problem tractable.

35 / 50



Fast and Secure Routing Algorithms for Quantum Key Distribution Networks†

Routing Policy to Stabilize the Virtual Queues

Define a Quadratic Lyapunov (potential) function

L(Q̃(t))
def
=
∑
e∈E

Q̃2
e (t)

The one-slot drift of L(Q̃(t)) under any admissible policy π may be computed to be

∆π(t)
def
= L(Q̃(t + 1))− L(Q̃(t))

≤ B + 2

(∑
e∈E

Q̃e(t)A(t)1(e ∈ Tπ(t))

︸ ︷︷ ︸
(a)

−
∑
e∈E

Q̃e(t)ce(t)

)

Where Tπ(t)∈ T and µπ(t) ∈M are routing and activation control variables
chosen for slot t.
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Optimal Routing Policy

Minimizing the term (a), we get the following optimal routing policy.

Optimal Routing : T∗(t)

T∗(t) ∈ arg min
T∈T

∑
e∈E

Q̃e(t)1(e ∈ T )

Examples:

� For the unicast problem : T∗(t) is the Shortest s→ t path in the weighted
graph G(V ,E , Q̃(t)).

� For the broadcast problem : T∗(t) is the Minimum Weight Spanning tree
(MST) in the weighted graph G(V ,E , Q̃(t)).

� For the multicast problem : T∗(t) is the Minimum Weight Steiner tree in the
weighted graph G(V ,E , Q̃(t)) connecting the source nodes to the destination
nodes.
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Example of Optimal Routing: Unicast

1

2

3

4

p

2

15 4

5

3

Network Weighted by the Virtual Queue Lengths
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Example of Optimal Routing: Unicast

1

2

3

4

p

2

15 4

5

3
Shortest 1-4 path = {{1, 2}, {2, 4}}

Network Weighted by the Virtual Queue Lengths
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Example of Optimal Routing: Broadcast

1

2

3

4

p

2

15 4

5

3
MST rooted at 1 = {{1, 2}, {2, 3}, {2, 4}}

Network Weighted by the Virtual Queue Lengths
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Back to QKD: Tandem Queue Decomposition

The main difficulty in applying the UMW policy in the QKD setting is that not all
packets waiting in the queue can be scheduled for transmission over the classical
links

Only the encrypted packets can be transmitted while the unencrypted packets must wait
till additional quantum keys become available

This leads to the following natural queueing architecture for each link e

Divide the packets waiting to cross the link e in two tandem queues: Xe and Ye .

The first group of packets (in Xe) are unencrypted and wait for the keys to be available

The second group of packets (in Ye) are encrypted and wait due to the limited link
capacity

Unencrypted packets

(waiting for keys)

Xe(t) Ye(t)

Encrypted packets

(waiting due to the limited capacity)

TQD architecture for the link e
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Virtual Queue Dynamics

Let κe(t) be the number of keys available for encoding packets for link e

Note that κe(t) depends on the routing policy. Hence, the routing policy must balance
between the available keys and capacities.

The one-step evolution (Lindley recursion) of the virtual queue processes X̃ and Ỹ can
be written as:

X̃e(t + 1) =
(
X̃e(t) + Aπe (t)− κe(t)

)+
, ∀e ∈ E (4)

Ỹe(t + 1) =
(
Ỹe(t) + Aπe (t)− γe

)+
, ∀e ∈ E . (5)

Since a packet is encrypted as soon as the keys become available, we have

X̃e(t)κe(t) = 0.

κe(t) is otherwise a complex process.

TQD Policy (informal)

Apply the UMW policy in the above transformed network with twice as many queues.
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Stabilizing Routing Policy

Similar to the UMW policy, the drift of the quadratic Lyapunov function of the virtual
queues may be bounded as:

∆π(t) ≡ E
(
L(Q̃(t + 1))− L(Q̃(t))|Q̃(t)

)
≤ B + 2

∑
e∈E

(
X̃e(t) + Ỹe(t)

)
E
(
Aπe (t)|Q̃(t)

)
− 2

∑
e∈E

X̃e(t)ηe − 2
∑
e∈E

Ỹe(t)γe , (6)

where B is a finite constant that depends on the upper bounds of the packet arrival and
quantum key generation rates.
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TQD Algorithm

Algorithm 1 Tandem Queue Decomposition (TQD) algorithm

1: [Weight Assignment] Assign each edge of the original graph e ∈ E a weight We(t)
equal to X̃e(t) + Ỹe(t), i.e

W (t)← X̃ (t) + Ỹ (t).

2: [Route Assignment] Compute a Minimum-Weight Route T (c)(t) ∈ T (c)(t) for a
class c incoming packet in the weighted graph G(V ,E).

3: [Key Generation] Generate symmetric private keys for every edge e via QKD and
store them in the key banks.

4: [Encryption] Encrypt the data packets waiting in physical queue Xe with the available
keys and move the encrypted packets to the downstream queue Ye .

5: [Packet Forwarding] Transmit the encrypted physical packets from the queue Ye

according to some packet scheduling policy (e.g., ENTO, FIFO etc).

6: [Decryption] Decrypt the data packets received at physical queue Xe for every edge
e using the symmetric key generated earlier via the QKD process.

7: [Queue Counter Updation] Update the virtual key queues and virtual data queues
assuming a precedence-relaxed system.
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Strong Stability

Theorem 2 (Strong Stability of the Virtual Queues):

Under the TQD routing policy, the virtual queue process {Q̃(t)}t≥0 is strongly stable

for any arrival rate vector λ ∈ int(Λ), i.e.,

lim sup
T→∞

1

T

T−1∑
t=0

∑
e∈E

E(X̃e(t) + Ỹe(t)) <∞

Theorem 3: Rate Stability of the physical queues

Under the action of a suitable packet scheduling policy, that physical queues are rate
stable, i.e.,

lim
t→∞

Qe(t)

t
= 0, ∀e ∈ E , a.s.

Proof involves an adversarial queueing argument using the specific packet scheduling
policy.
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Simulation - Unicast TrafficProject leftover Stu↵. Unused
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Simulation - Broadcast Traffic
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Our team is currently building a realistic simulator using OMNeT++ platform.
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Thanks

Thank You!

I am reachable at: abhishek.sinha at ee dot iitm dot ac dot in
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