
Advanced Topics in Artificial Intelligence: EE6180
Indian Institute of Technology Madras November 18, 2020
Instructor: Abhishek Sinha

Problem Set 4

• This problem set is due on December 2, 2020 in the class.
• Each problem carries 10 points.
• No collaboration among the students allowed. Any two or more identical or nearly-identical
solutions will automatically receive zero points each.

1. (A PAC-Bayesian Theorem) In this problem, we will prove a different version of
the PAC-Bayesian Theorem from what we derived in the class. Recall the notations
introduced in the class. We will show that for any fixed prior distribution P on H and
any 0 < δ ≤ 1 the following statement holds with probability greater than 1 − δ over
S:

D(L̂S(Q)||L(Q)) ≤
D(Q||P) + log 2m

δ

m− 1
, ∀Q. (1)

The statement above will follow from the following two bounds.

(a) First, using Donsker-Varadhan’s inequality, show that for any fixed prior distribu-
tion P on H, we have:

(m− 1)D(L̂S(Q)||L(Q)) ≤ D(Q||P) + lnEh∼P [e(m−1)D(L̂S(h)||L(h))].

(b) Next, following the steps below, show that for any fixed probability distribution P
on H and any 0 < δ ≤ 1, the following upper bound holds with probability at least
1− δ :

Eh∼P [e(m−1)D(L̂S(h)||L(h))] ≤ 2m

δ
.

I Prove that for any real valued random variable X satisfying P(X ≤ ε) ≤ e−mf(ε)

where f(·) is a non-negative non-increasing function, the following inequality holds:

E[e(m−1)f(X)] ≤ m.

II Chernoff-Hoeffding’s bound states that for i.i.d. random variables X1, X2, . . . , Xm

from the interval [0, 1], we have

P(X̄ ≤ ε) ≤ e−mD
+(ε||E(X1)),

where D+(p||q) = 0 if p ≥ q and is D(p||q) otherwise. Using the Chernoff-
Hoeffding’s bound and part I, show that

ES∼Dm [e(m−1)D+(L̂S(h)||L(h))] ≤ m.

2 Problem Set 4

III Use Markov’s inequality to prove that for any δ ∈ [0, 1], we have with probability
at least 1− δ

2
over S:

Eh∼P [e(m−1)D+(L̂S(h)||L(h))] ≤ 2m

δ
.

IV Prove the PAC-Bayes bound given in Eqn. (1).

2. (Non-parametric Least-Square Estimation) Consider the function class Sα,γ(Cmax, L)
which we introduced in the notes. Recall that,

Sα,γ(Cmax, L) = {f : [0, 1]→ R : |f (j)|∞ ≤ Cmax,∀0 ≤ j ≤ α, and

|fα(x)− fα(y)| ≤ L|x− y|γ,∀x, y ∈ [0, 1].}

It can be shown that for some C (which depends on the parameters), the δ-covering
number of Sα,γ(Cmax, L) in the sup-norm may be bounded as follows:

logN(δ, Sα,γ(Cmax, L), || · ||∞) ≤ C

(
1

δ

)1/(α+γ)

.

Suppose we observe
Yi = f ∗(xi) + εi, 1 ≤ i ≤ n,

where f ∗ ∈ Sα,γ(Cmax, L), and εi are i.i.d. standard Gaussians and the xi’s are deter-
ministic points in [0, 1]. Consider the non-parametric least-square estimator

f̂ ∈ arg min
f∈Sα,γ(Cmax,L)

1

n

n∑
i=1

(
Yi − f(xi)

)2
.

Using the notion of Gaussian complexity of the function class Sα,γ(Cmax, L) and Dud-
ley’s entropy integral, prove an upper-bound for the mean-squared estimation error:

MSE ≡ E
(

1

n

n∑
i=1

(
f̂(xi)− f ∗(xi)

)2
)
.

3. (Online Mirror Descent) Besides FTRL and FTPL, Online Mirror Descent (OMD)
is yet another general framework to derive online learning algorithm for OCO. Recall
the OCO framework as discussed in the class. For a differentiable convex function
ψ : Ω→ R, the Bregman divergence (w.r.t. ψ) between two points w and u is defined
as

Dψ(w, u) = ψ(w)− ψ(u)− 〈∇ψ(u), w − u〉.
The function ψ is chosen such that the mapping ∇ψ : Ω → Ω is invertible 1. The
update of OMD is then

wt+1 = arg min
w∈Ω

[
〈w,∇ft(wt)〉+

1

η
Dψ(w,wt)

]
,

1More precisely, the function ψ : Ω→ R is chosen to be a Legendre function.

Handout : Problem Set 4 3

for some step size η > 0. In other words, OMD tries to find a point that minimizes the
loss at time t while being close to the previous point wt.
(a) Let w′t+1 be such that ∇ψ(w′t+1) = ∇ψ(wt) − η∇ft(wt) (assume that it exists).
Prove that

wt+1 = arg min
w∈Ω

Dψ(w,w′t+1).

(b) Verify that for any u ∈ Ω, the instantaneous regret can be written as

〈wt − u,∇ft(wt)〉 =
1

η

(
Dψ(u,wt)−Dψ(u,w′t+1) +Dψ(wt, w

′
t+1

)
.

(c) Show that

Dψ(u,wt+1) ≤ Dψ(u,w′t+1), ∀u ∈ Ω.

(d) Hence conclude the following regret bound for OMD

T∑
t=1

(
ft(wt)− ft(u)

)
≤ Dψ(u,w1)

η
+

1

η

T∑
t=1

Dψ(wt, w
′
t+1). (2)

(e) Show that Hedge is an instance of OMD and recover its regret bound using Eqn.
(2).

4. Ï(Experimenting with MAB algorithms) This problem is designed to give you
a step-by-step hands-on experience of working with Multi Armed Bandit (MAB) algo-
rithms by understanding, modifying, and experimenting with an existing MAB code
written in Python2.

(a) Download the Github repository:
https://github.com/johnmyleswhite/BanditsBook

The code is located in a directory named ∼/BanditsBook/.

(b) Change your current directory to /Banditsbook/. Read the README.md file care-
fully and familiarize yourself with the structure of the codebase. This repository
implements the following six standard bandit algorithms - ε-Greedy, Softmax,

UCB1, UCB2, Hedge, and Exp3.

(c) Change your current directory to /python/algorithms/ and check out the source
code of each of the above algorithms. The codes differ in how the functions
select arm() and update() are implemented for each of the above algorithms.
Make sure you fully understand the working of these two functions for each of the
above algorithms.

2Refer to https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/

python-tutorial/ for a quick tutorial.

4 Problem Set 4

(d) The code implements three different models of bandits - adversarial, Bernoulli,

and Normal. Check out the relevant codes at /python/arms/.

(e) In this problem, we will compare the performance of ε-Greedy (for ε = 0.05),
UCB1, and Exp3 (with random exploration probability γ = 0.05) policies for
four Bernoulli bandits for a horizon of length T = 104 and averaging the result
over N = 100 simulations. Set the expected reward values of the bandits to be
p = [0.5, 0.95, 0.2, 0.8].

(f) Modify the parameters in the file /python/demo.py to set up the required simu-
lation environment.

(g) By suitably augmenting and modifying the function test algorithm() (defined
at /python/testing framework/tests.py), investigate the following:

• For a bandit algorithm π, let Nπ
a (t) denote the average fraction of times

(averaged over N runs) the arm a was selected by the algorithm π by the
time t. Plot Nπ

a (t), a ∈ [0, 1, 2, 3] as a function of t ∈ [0, T] for each of the
above three algorithms. What do you observe from the nature of the plots?
Can you guess what happens when T →∞?

• For a bandit algorithm π, let Rπ(t) denote the pseudo-regret of the algorithm
π up to time t. In other words, if r̄π(t) denotes the average-reward (over N
runs) obtained by the algorithm π at time t, then the pseudo-regret is defined
as Rπ(t) = tmaxi pi −

∑t
τ=1 r̄

π(τ). Plot the time-evolution of Rπ(t) for the
above three algorithms in the same graph. What do you observe from the
plots for different range of values of t? How sensitive is the plot with respect
to the parameters ε and γ?

5. (Foresight and Hindsight Regret for the IID cost model) In the class, we upper-
bounded the pseudo-regret, also called the Foresight regret, where the comparator was
taken to be the best arm in expectation. In this problem, we will explore the usual
notion of regret, also known as the Hindsight regret, where the comparator is chosen
to be the best observed arm.

Consider the adversarial bandit setting as discussed in the class with full feedback and
i.i.d. costs from the interval ct(a) ∈ [0, 1],∀t, a.

(a) Prove that

min
a

E(cost(a)) ≤ E(min
a

cost(a)) +O(
√
T log(KT)).

Take Away: All Õ(
√
T) regret bounds for algorithms for stochastic bandits (e.g.,

UCB, Successive Elimination) carry over to “hindsight regret”.

(b) (Lower bound for hindsight regret) Construct a problem instance with a
deterministic adversary for which any algorithm suffers regret

E[cost(ALG)−min
a

cost(a)] ≥ Ω(
√
T logK).

Handout : Problem Set 4 5

(c) Prove that algorithms UCB and Successive Elimination achieve logarithmic regret
bound even for hindsight regret, assuming that the best-in-foresight arm a∗ is
unique.

