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Problem Set 4

• This problem set is due on May 12, 2021 in the class.
• Each problem carries 10 points.
• No collaboration allowed. Each student must write his/her own solution.

1. (Multiplicative System) In the class, we have proved Hoeffding’s inequality that
gives an exponential bound on the deviation probability P(|X1 + ... + Xn) ≥ t] for
a sum of independent random variables that are bounded and have zero mean. In
this problem, you will develop a generalization of Hoeffding’s inequality to sums of
dependent random variables that satisfy a certain weak orthogonality condition.

(a) In preparation for the rest of the problem, derive the inequality

cosh(x) ≤ exp(x2/2), ∀x ∈ R.

(b) We say that a collection X1, ..., Xn of random variables is a multiplicative system
if, for any 1 ≤ k ≤ n and any set of k indices 1 ≤ i1 < i2 < . . . < ik ≤ n,

E[Xi1Xi2 . . . Xik ] = 0.

Prove that if X1, . . . , Xn are a multiplicative system, then

E
[ n∏
i=1

(aiXi + bi)

]
=

n∏
i=1

bi.

for any choice of real constants a1, . . . , an and b1, . . . , bn.

(c) Let U1, . . . , Un be n possibly dependent random variables, and let Z be any real-
valued random variable jointly distributed with them. For each i , let Xi = E[Z|U i]−
E[Z|U i−1] (where E[Z|U0] ≡ EZ). Prove that X1, . . . , Xn are a multiplicative system.

(d) Consider a multiplicative system X1, . . . , Xn, such that |Xi| ≤ ci for each i , where
ci > 0 are some finite constants. Prove that, for any t > 0:

E
[

exp(t
n∑
i=1

Xi)

]
≤

n∏
i=1

cosh(tci).

(e) Now for the final step: prove that if X1, . . . , Xn are a multiplicative system of
random variables satisfying the boundedness condition of part (c), then

P
(
|

n∑
i=1

Xi| ≥ t

)
≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
.
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2. (Sudakov-Fernique inequality) Recall the Gaussian interpolation lemma proved
in the class: for two independent Gaussian random vectors X ∼ N (0,ΣX) and Y ∼
N (0,ΣY ), define the interpolated Gaussian vector

Z(u) :=
√
uX +

√
1− uY, u ∈ [0, 1].

Then for any twice-differentiable function f : Rn → R, we have

d

du
Ef(Z(u)) =

1

2

n∑
i,j=1

(ΣX
ij − ΣY

ij)E
(

∂2f

∂xi∂xj
(Z(u))

)
(1)

Use (1) to prove the Sudakov-Fernique inequality stated below:

(Sudakov-Fernique) Let (Xt)t∈T and (Yt)t∈T be two mean-zero Gaussian processes.
For simplicity, assume |T | <∞. Assume that, for all t, s ∈ T, we have

E(Xt −Xs)
2 ≤ E(Yt − Ys)2.

Then
E sup

t∈T
Xt ≤ E sup

t∈T
Yt.

Hint: Take f(x) = fβ(x) = 1
β

ln
∑n

i=1 exp(βxi). Note that fβ(x)↗ maxi xi as β →∞.

3. (Exponentially many mutually almost orthogonal points) From linear algebra,
we know that any set of orthonormal vectors in Rn contains at most n vectors. However,
if we allow the vectors to be almost orthogonal, there can be exponentially many of
them! Prove this counterintuitive fact as follows. Fix ε ∈ (0, 1). Show that there exists
a set {x1, x2, . . . , xN} of unit vectors in Rn which are mutually almost orthogonal:

|〈xi, xj〉| ≤ ε,∀i 6= j,

and the set is exponentially large in n:

N ≥ exp(c(ε)n).

4. (Non-parametric Least-Square Estimation) Consider the function class Sα,γ(Cmax, L)
which we introduced in the notes. Recall that,

Sα,γ(Cmax, L) = {f : [0, 1]→ R : |f (j)|∞ ≤ Cmax,∀0 ≤ j ≤ α, and

|fα(x)− fα(y)| ≤ L|x− y|γ,∀x, y ∈ [0, 1].}

It can be shown that for some C (which depends on the parameters), the δ-covering
number of Sα,γ(Cmax, L) in the sup-norm may be bounded as follows:

logN(δ, Sα,γ(Cmax, L), || · ||∞) ≤ C

(
1

δ

)1/(α+γ)

.
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Suppose we observe
Yi = f ∗(xi) + εi, 1 ≤ i ≤ n,

where f ∗ ∈ Sα,γ(Cmax, L), and εi are i.i.d. standard Gaussians and the xi’s are deter-
ministic points in [0, 1]. Consider the non-parametric least-square estimator

f̂ ∈ arg min
f∈Sα,γ(Cmax,L)

1

n

n∑
i=1

(
Yi − f(xi)

)2
.

Using the notion of Gaussian complexity for the function class Sα,γ(Cmax, L) and Dud-
ley’s entropy integral, prove an upper-bound for the mean-squared estimation error:

MSE ≡ E
(

1

n

n∑
i=1

(
f̂(xi)− f ∗(xi)

)2)
.

5. (Fundamental Limits of Sign Identification in Sparse Linear Regression) In
sparse linear regression, we have n observations Yi = 〈Xi, θ

∗〉 + εi, where Xi ∈ Rd are
known (fixed) matrices and the vector θ∗ has a small number k � d of non-zero entries,
and εi ∼ N(0, σ2). In this problem, we investigate the problem of sign recovery, that
is, identifying the vector of signs sign(θ∗j ),∀j, where sign(0) = 0.
Assume we have the following process: fix a signal threshold θmin > 0. First, a vector
S ∈ {−1, 0,+1}d is chosen uniformly at random from the set of vectors Sk ≡ {s ∈
{−1, 0,+1}d : ||s||1 = k}, k ≥ 2. Then we define the vectors θs so that θsj = θminsj, and
conditional on S = s, we observe

Y = Xθs + ε, ε ∼ N(0, σ2In×n).

(Here X ∈ Rn×d is a known fixed matrix.)

(a) Use Fano’s inequality to show that for any estimator Ŝ of S, we have

P(Ŝ 6= S) ≥ 1

2
unless n ≥

d
k

ln
(
d
k

)
||n−1/2X||2Fr

σ2

θ2min

.

(b) Assume that X ∈ {−1,+1}n×d. Give a lower bound on how large n must be for

sign recovery. Give a one line interpretation of the quantity
θ2min

σ2 .


