Topics in Random Processes and Concentrations: EE 6112
Indian Institute of Technology Madras April 27, 2021
Instructor: Abhishek Sinha

Problem Set 4

e This problem set is due on May 12, 2021 in the class.
e Each problem carries 10 points.
e No collaboration allowed. Each student must write his/her own solution.

1. (Multiplicative System) In the class, we have proved Hoeffding’s inequality that
gives an exponential bound on the deviation probability P(|X1 + ... + Xn) > t] for
a sum of independent random variables that are bounded and have zero mean. In
this problem, you will develop a generalization of Hoeffding’s inequality to sums of
dependent random variables that satisfy a certain weak orthogonality condition.

(a) In preparation for the rest of the problem, derive the inequality

cosh(r) < exp(2?/2), Vx € R.

(b) We say that a collection Xj, ..., X,, of random variables is a multiplicative system
if, for any 1 < k£ < n and any set of k indices 1 < iy < iy < ... < i < n,

E[X;, X, ... X;,] =0.

Prove that if X,...,X,, are a multiplicative system, then
E[H(aiXi + bi)} =]o:
i=1 i=1
for any choice of real constants aq,...,a, and by, ..., b,.

(c) Let Uy,...,U, be n possibly dependent random variables, and let Z be any real-
valued random variable jointly distributed with them. For each i , let X; = E[Z|U"] —
E[Z|U!] (where E[Z|U°] = EZ). Prove that X1,..., X, are a multiplicative system.

(d) Consider a multiplicative system X1, ..., X, such that |X;| < ¢; for each i , where
¢; > 0 are some finite constants. Prove that, for any ¢ > 0:

Elexp(tiilXi)} < f[lcosh(tci).

(e) Now for the final step: prove that if Xi,..., X, are a multiplicative system of
random variables satisfying the boundedness condition of part (c), then

t2

IP’(|2”:XZ~| > t> < 2exp (— m).

i=1 (
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2. (Sudakov-Fernique inequality) Recall the Gaussian interpolation lemma proved
in the class: for two independent Gaussian random vectors X ~ N(0,3%) and Y ~
N(0,%Y), define the interpolated Gaussian vector

Z(u) = VuX +vV1—uY, wuel0,1].

Then for any twice-differentiable function f : R™ — R, we have

n
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Use (1) to prove the Sudakov-Fernique inequality stated below:
(Sudakov-Fernique) Let (X;)ier and (Y;)ier be two mean-zero Gaussian processes.
For simplicity, assume |7| < co. Assume that, for all ¢, s € T, we have

E(X, — X,)? <E(Y, - Y,)%.

Then
Esup X; < EsupV;.

teT teT

Hint: Take f(z) = fz(z) = %ln Yo exp(fz;). Note that fg(z) / max; z; as f — oo.

3. (Exponentially many mutually almost orthogonal points) From linear algebra,
we know that any set of orthonormal vectors in R™ contains at most n vectors. However,
if we allow the vectors to be almost orthogonal, there can be exponentially many of
them! Prove this counterintuitive fact as follows. Fix ¢ € (0,1). Show that there exists
a set {x1,29,...,xx} of unit vectors in R™ which are mutually almost orthogonal:

(i, 5)| < €, Vi#
and the set is exponentially large in n:

N > exp(c(e)n).

4. (Non-parametric Least-Square Estimation) Consider the function class S, ~(Ciax, L)
which we introduced in the notes. Recall that,

Sar(Cma, L) = {f :[0,1] = R : | fD] o < Chpa; V0 < j < @@, and
|f* (@) = f*(y)| < Llz —y[",Va,y € 0,1].}

It can be shown that for some C' (which depends on the parameters), the §-covering
number of S, (Chax, L) in the sup-norm may be bounded as follows:

1\ Mt
log N (8, Say(Crnaxs L), || - [lee) < 0(5) :
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Suppose we observe

where f* € Sy (Cmax, L), and ¢; are i.i.d. standard Gaussians and the z;’s are deter-
ministic points in [0, 1]. Consider the non-parametric least-square estimator

fearg min )%; (Vi — f(xi))Q'

fesa,’v(cmaqu

Using the notion of Gaussian complexity for the function class Sy »(Chnax, L) and Dud-
ley’s entropy integral, prove an upper-bound for the mean-squared estimation error:

1

MSE = E(E g (f(x:) - f*(g;i))Q).

5. (Fundamental Limits of Sign Identification in Sparse Linear Regression) In

sparse linear regression, we have n observations Y; = (X, 0*) + ¢;, where X; € R? are
known (fixed) matrices and the vector 6* has a small number k£ < d of non-zero entries,
and ¢; ~ N(0,0?). In this problem, we investigate the problem of sign recovery, that
is, identifying the vector of signs sign(¢}), Vj, where sign(0) = 0.
Assume we have the following process: fix a signal threshold 6, > 0. First, a vector
S € {—1,0,+1}¢ is chosen uniformly at random from the set of vectors S, = {s €
{—1,0,41}": ||s]|1 = k},k > 2. Then we define the vectors 6° so that 05 = Onins;, and
conditional on S = s, we observe

Y =X0°+¢, €~N(0,06* )
(Here X € R™ is a known fixed matrix.)

(a) Use Fano’s inequality to show that for any estimator S of S, we have

d d

—ln( ) o2

k k
unless n > 172X |2 2

Fr Ymin

P(S # 5) >

N | —

(b) Assume that X € {—1,+1}"*% Give a lower bound on how large n must be for
2
sign recovery. Give a one line interpretation of the quantity 0(%2



