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Instructor: Abhishek Sinha

Problem Set 3

• This problem set is due on November 18, 2020 before the class.
• No collaboration among the students allowed. Any two or more identical or nearly-identical
solutions will automatically receive zero points each.

1. (Minimax Lower Bound for the Uniform Location Family) In this problem,
we will show that the minimax rate of estimation for the parameter of a uniform

distribution (in squared error) scales as 1
n2 . In particular, assume that Xi

i.i.d.∼ Uni(θ, θ+
1). Let X(1) = mini{Xi} denote the first order statistic.

(a) Prove that

Eθ[(X(1) − θ)2] =
2

(n+ 1)(n+ 2)
.

(b) Using Le Cam’s two point method, show that the minimax rate for estimation of
θ ∈ R for the uniform family U = {Uni(θ, θ + 1) : θ ∈ R} in squared error has lower
bound c

n2 , where c is a numerical constant.

2. (KL Divergence and Differential Privacy) In this problem, we explore estimation
under a constraint known as differential privacy. The conclusion from this problem
will be used in the next problem on detecting drug abuse with private data. In one
version of private estimation, the collector of data is not trusted, so instead of seeing
true data Xi ∈ X only a disguised version Zi ∈ Z is viewed, where given X = x, we
have Z ∼ Q(·|X = x). We say that this Zi is differentially private if for any subset
A ⊂ Z and any pair x, x′ ∈ X ,

Q(Z ∈ A|X = x)

Q(Z ∈ A|X = x′)
≤ exp(α). (1)

The intuition here, from a privacy standpoint, is that no matter what the true dataX is,
any points x and x′ are essentially equally likely to have generated the observed signal
Z. We explore a few consequences of differential privacy in this question, including so-
called quantitative data processing inequalities. We assume that α < 1 for simplicity.

First, we show how differential privacy acts as a contraction on probability distribu-
tions. Let P1 and P2 be arbitrary distributions on X (with densities p1 and p2 w.r.t. a
base measure µ) and define the marginal distributions

Mi(Z ∈ A) :=

∫
X
Q(Z ∈ A|X = x)pi(x)dµ(x), i ∈ {1, 2}.
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We will prove that there is a universal (numerical) constant C <∞ such that for any
P1, P2,

D(M1||M2) +D(M2||M1) ≤ C(eα − 1)2||P1 − P2||2. (2)

(a) Show that for any a, b > 0

| ln a
b
| ≤ |a− b|

min{a, b}
.

(b) Use the shorthands q(z|x) = Q(Z = z|X = x) and mi(z) =
∫
q(z|x)pi(x)dx. Show

that there exists a universal constant c <∞ such that

|m1(z)−m2(z)| ≤ c(eα − 1) inf
x∈X

q(z|x)||P1 − P2||TV.

(c) Combining parts (a) and (b), prove inequality (2).

3. (Application of Le Cam’s Method to Detecting Drug Abuse) In this problem,
we apply the results of the previous exercise to a problem of estimation of drug abuse.
Assume we interview a series of individuals i = 1, 2, . . . , n, asking each whether he
or she takes illicit drugs. Let Xi ∈ {0, 1} be 1 if person i uses drugs, 0 otherwise,
and define θ∗ = E[X] = E[Xi] = P (X = 1). To avoid answer bias, each answer Xi is
perturbed by some channel Q, where Q is α-differentially private (recall the definition
in Eqn. (1)). That is, we observe independent Zi where conditional on Xi, we have

Zi|Xi = x ∼ Q(·|Xi = x).

To make sure everyone feels suitably private, we assume α < 1
2

(so that (eα−1)2 ≤ 2α2).
In the questions, let Qα denote the family of all α-differentially private channels, and
let P denote the Bernoulli distributions with parameter θ(P ) = P(Xi = 1) ∈ [0, 1] for
P ∈ P .

(a) Use Le Cam’s method and the strong data processing inequality to show that the
minimax rate for estimation of the proportion θ∗ in absolute value satisfies

Mn := inf
Q∈Qα

inf
θ̂

sup
P∈P

E(|θ̂(Z1, Z2, . . . , Zn)− θ(P )|) ≥ c
1√
nα2

.

(b) Give a rate-optimal estimator for this problem. That is, define a channel Q that
is α-differentially private and an estimator θ̂ such that E[|θ̂(Zn) − θ|] ≤ C√

nα2
, where

C > 0 is a universal constant.

(c) Download the dataset at http://web.stanford.edu/class/stats311/Data/drugs.txt,
which consists of a sample of 100, 000 hospital admissions and whether the patient was
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abusing drugs (a 1 indicates abuse, 0 no abuse). Use your estimator from part (b) to
estimate the population proportion of drug abusers: give an estimated number of users
for α ∈ {2−k, k = 1, 2, . . . , 10}. Perform each experiment several times. Assuming that
the proportion of users in the dataset is the true population proportion, how accurate
is your estimator?

4. (Fundamental Limits of Sign Identification in Sparse Linear Regression) In
sparse linear regression, we have n observations Yi = 〈Xi, θ

∗〉 + εi, where Xi ∈ Rd are
known (fixed) vectors and the vector θ∗ has a small number k � d of non-zero entries,
and εi ∼ N(0, σ2). In this problem, we investigate the problem of sign recovery, that
is, identifying the vector of signs sign(θ∗j ),∀j, where sign(0) = 0.
Assume we have the following process: fix a signal threshold θmin > 0. First, a vector
S ∈ {−1, 0,+1}d is chosen uniformly at random from the set of vectors Sk ≡ {s ∈
{−1, 0,+1}d : ||s||1 = k}, k ≥ 2. Then we define the vectors θs so that θsj = θminsj, and
conditional on S = s, we observe

Y = Xθs + ε, ε ∼ N(0, σ2In×n).

(Here X ∈ Rn×d is a known fixed matrix.)

(a) Use Fano’s inequality to show that for any estimator Ŝ of S, we have

P(Ŝ 6= S) ≥ 1

2
unless n ≥

d
k

ln
(
d
k

)
||n−1/2X||2Fr

σ2

θ2min

.

(b) Assume that X ∈ {−1,+1}n×d. Give a lower bound on how large n must be for

sign recovery. Give a one line interpretation of the quantity
θ2min

σ2 .

5. (VC-dimension of Polynomials) In this exercise we will find the VC dimensions of
the set of all polynomials of degree at most d. Let Hd denote the set of all polynomials
of degree at most d with real coefficients. A polynomial p : R→ R classifies the point
x to +1 if p(x) ≥ 0, or to the class −1 otherwise.
Recall the fundamental theorem of algebra which says that a polynomial of degree at
most d defined over R has at most d real roots.
(a) Show that any polynomial p ∈ Hd can have at most d sign changes over R.
(b) Show that there exists a set S of real numbers with cardinality d+ 1 which can be
shattered by Hd.
(c) Use (a) to show that no set S of real numbers with cardinality d+2 can be shattered
by Hd.
(b) and (c) taken together proves that the VC dimension of Hd is d+ 1.

6. (VC-dimension of Boolean Conjunctions) Let Hd
con be the class of Boolean con-

junctions over the variables x1, x2, . . . , xd, (d ≥ 2). In this problem we calculate the
VCdim(Hd

con).
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• Show that |Hd
con| ≤ 3d + 1.

• Conclude that VCdim(Hd
con) ≤ d log 3.

• Show that Hd
con shatters the set of unit vectors {ei : i ≤ d}.


