Problem Set 3

- This problem set is due on October 6, 2021 in the class.
- Each problem carries 10 points.
- Collaboration is strictly prohibited. Each student must submit their own work.
 - 1. (Integrals) Rigorously evaluate the following integrals (taken in the sense of Lebesgue):
 - (a) $\lim_{n\to\infty} \int_0^\infty (1+\frac{x}{n})^{-n} \sin(x/n) dx.$
 - (b) $\lim_{n\to\infty} \int_0^\infty \frac{n\sin(x/n)}{x(1+x^2)} dx.$
 - 2. (On the growth of the maximum of *n* independent exponentials) Suppose that X_1, X_2, \ldots are independent random variables, each with the exponential distribution with parameter $\lambda = 1$. For $n \geq 2$, let $Z_n = \frac{\max(X_1, X_2, \ldots, X_n)}{\ln(n)}$.
 - (a) Find a simple expression for the CDF of Z_n .
 - (b) Show that the sequence $\{Z_n\}_{n\geq 1}$ converges in distribution to a constant, and find the constant.
 - 3. (Dominated Convergence) Suppose $|X_n| \leq Z, \forall n \geq 1$, where $\mathbb{E}(Z) < \infty$. Prove that if $X_n \xrightarrow{p} X$ then $\lim_{n\to\infty} \mathbb{E}|X_n X| = 0$.
 - 4. (Convergence in total variation) The sequence of discrete random variables X_n taking non-negative integral values with mass functions p_n , is said to converge in total variation to X with mass function p if

$$\sum_{x} |p_n(x) - p(x)| \to 0, \text{ as } n \to \infty.$$

Suppose $X_n \to X$ in total variation, and $u : \mathbb{R} \to \mathbb{R}$ is bounded. Show that $\mathbb{E}(u(X_n)) \to \mathbb{E}(u(X))$.

5. (Convergence of a random recursion) Suppose $\{U_n\}_{n\geq 1}$ are independent random variables, each independently distributed on the interval [0, 1]. Let $X_0 = 0$, and define the sequence of random variables $\{X_n, n \geq 1\}$ by the following recursion:

$$X_n = \max\left\{X_{n-1}, \frac{X_{n-1} + U_n}{2}\right\}.$$

• (Warm Up:) Simulate the random sequence $\{X_n\}_{n\geq 1}$ (in any high-level programming language of your choice) for $1 \leq n \leq 1000$ for a sufficiently many times. What do you observe?

- Does $\lim_{n\to\infty} X_n$ exist in the a.s. sense? Rigorously prove your result.
- Does $\lim_{n\to\infty} X_n$ exist in the m.s. sense? Rigorously prove your result.
- Identify the random variable Z such that $X_n \to Z$ in probability. Justify your answer.