Problem Set 3

- This problem set is due on March 14, 2019 in the class.
- Each problem carries 10 points.

• You may work on the problems in groups of size at most **two**. However, **each student must write their own solution**. If you collaborate on the problems, clearly mention the name of your collaborator.

- 1. (Martingales) On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ consider a sequence of random variables X_1, X_2, \ldots, X_n and σ -fields $\mathcal{F}_1, \ldots, \mathcal{F}_n \subset \mathcal{F}$ such that $\mathbb{E}[X_j|\mathcal{F}_{j-1}] = X_{j-1}$ and $\mathbb{E}[X_j^2] < \infty$.
 - (a) Prove directly (without using Jensen's inequality) that $\mathbb{E}[X_j^2] \ge \mathbb{E}[X_{j-1}^2]$ for all $j = 2, \ldots, n$.
 - (b) Suppose $X_n = X_1$ almost surely. Prove that in this case $X_1 = \ldots = X_n$ almost surely.
- 2. ("How to gamble if you must") Suppose that you are gambling in one of the famous casinos at Goa (although, I shall strictly advise you against it!). Your winnings per unit stake on game n are ϵ_n , where the ϵ_n are i.i.d. random variables with

$$\mathbb{P}(\epsilon_n = +1) = p, \mathbb{P}(\epsilon_n = -1) = q, \quad \frac{1}{2}$$

You can't borrow money from others during the game. Thus, your stake W_n on game n must lie between 0 and Z_{n-1} , where Z_{n-1} is your fortune at time n-1. Your objective is to maximize the expected "interest rate" $\mathbb{E} \log(Z_N/Z_0)$, where N is a given integer representing the length of the game, and Z_0 , your fortune at time 0, is a given constant. Let $\{W_n\}_n$ be any previsible strategy and $D_{\mathrm{KL}}(p_1||p_2)$ denote the KULLBACK-LEIBLER (KL) Divergence ¹ between the distributions p_1 and p_2 .

(a) Show that, under $\{W_n\}_{n\geq 1}$, $\{\log Z_n - n\alpha\}_{n\geq 1}$ is a supermartingale, where

$$\alpha = D_{\mathrm{KL}}((p,q)||(1/2,1/2)) \equiv p \log p + q \log q + \log 2,$$

so that $\mathbb{E} \log(Z_N/Z_0) \leq N\alpha$.

† HINT: Recall Gibb's inequality, which states that for any two distributions p_1 and p_2 , we have $D_{\text{KL}}(p_1||p_2) \ge 0$, with the equality holding iff $p_1 = p_2$.

¹For discrete distributions $D_{\mathrm{KL}}(\boldsymbol{p}||\boldsymbol{q}) = \sum_{i} p_i \log \frac{p_i}{q_i}$.

(b) Hence, find the optimal strategy.

(c) [Purely optional. Attempt only if you are familiar with the theory of MDP. However, if you can correctly solve this part, you'll get a bonus of 5 points.] Solve Bellman's equations to find the optimal strategy using an MDP formulation of the problem. Compare this strategy to that of part (b).

HINT: Think about how to rewrite the total reward as a sum of per-stage rewards.

3. (Size of the maximum matching in a random bipartite graph) Given $1 \leq d \leq n$, let $U = \{u_1, \ldots, u_n\}$ and $V = \{v_1, v_2, \ldots, v_n\}$ be disjoint sets of cardinality n, and let G be a bipartite random graph with vertex set $U \cup V$, such that if V_i denotes the set of neighbors of u_i , then V_1, V_2, \ldots, V_n are independent, and each is uniformly distributed over the set of all $\binom{n}{d}$ subsets of V of cardinality d. A matching for G is a subset of edges M such that no two edges in M have a common vertex. Let Z denote the maximum of cardinalities of the matchings in G.

(a) Show that $\mathbb{E}(Z) = \Theta(n)$.

[↑] HINT: Consider the case d = 1 and use the linearity of expectation. When can a vertex $v \in V$ be included in a matching?

(b) Give an upper bound on $\mathbb{P}(|Z - \mathbb{E}[Z]| \ge \gamma \sqrt{n})$, for $\gamma > 0$, showing that for fixed d, the distribution of Z is concentrated about its mean as $n \to \infty$.

HINT: Use Mcdiarmid's inequality with the i.i.d. random variables $V_i, 1 \le i \le n$.