
Advanced Topics in Artificial Intelligence: EE6180
Indian Institute of Technology Madras October 6, 2020
Instructor: Abhishek Sinha

Problem Set 2

• This problem set is due on October 20, 2020 before the class.
• No collaboration among the students allowed. Any two or more identical or nearly-identical
solutions will automatically receive zero points each.

1. (Performance of deterministic algorithms [5 points]) Prove that any determin-
istic algorithm for the experts problem with N experts and 0− 1 costs can suffer total
cost T for some deterministic-oblivious adversary, even if the cost incurred by the best
expert in the hindsight is at most T/N .

2. (Realizability and Hedge) [5 points] Let F be a finite class of binary classifiers.
You are given access to a streaming sequence of data, i.e., an online sequence of
(feature, label) pairs {(xt, yt)}t≥1 according to the following protocol: upon seeing the
feature vector xt of the tth data point, you first predict its label ŷt, then its actual
label yt is revealed. Assume that you have the side information that the data can be
perfectly classified by at least one of the classifiers from the set F . In other words,

min
f∈F

∑
t

1(f(xt) 6= yt) = 0.

Suppose that you use the Hedge algorithm for your prediction. Prove that, with
learning rate η = 1

2
, you make a total of at most 4 ln |F| mistakes in expectation

irrespective of the total number of data points.

3. (Hedge is an FTPL) [10 points] Consider the following strategy (known as the Follow
the Perturbed Leader or FTPL) for the experts problem: at round t, play the following
expert

it = arg min
i

(Lt−1(i)− L0(i)),

where L0(i), 1 ≤ i ≤ N are N i.i.d. variables with Gumbel distribution, i.e., P(L0(i) ≤
x) = exp(− exp(−ηx)) for some parameter η,∀i.

(a) Prove that for any j, P(it = j) = P[j = arg maxi
exp(−ηLt−1(i))
exp(−ηL0(i)

].

(b) Prove that the random variable v(i) = exp(−ηL0(i)) follows the standard expo-
nential distribution.

(c) For any positive numbers ai, 1 ≤ i ≤ N , prove that P[j = arg maxi
a(i)
v(i)

] = a(j)∑N
i=1 a(i)

.

Conclude that FTPL with Gumbel noise is equivalent to sampling an expert using
Hedge’s prediction.
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4. (Doubling Trick) [5 points] In the class, we proved that Hedge has a regret bound of

2
√
T lnN when we set the learning rate η =

√
lnN
T
. Here we implicitly assume that the

horizon T is known. One way to handle unknown T is to make a guess on T , and once
the actual horizon exceeds the guess, double the guess and restart the algorithm with
a learning rate tuned based on the new guess. The full algorithm has been outlined in
Figure 1. Prove that Algorithm 1 ensures that for all T , we have RT (i∗) = O(

√
T lnN).

Figure 1: Doubling Trick with Hedge

5. (Generalizing the Fixed-Share algorithm) [25 points] In this problem, we improve
the switching regret bound given by the Fixed-Share algorithm in the setting where the
total number of competitors is small (see Figure 2). Recall the standard expert problem
(and the associated notations as discussed in the class), and let q1, q2, . . . , qT ∈ ∆(N)
be a sequence of competitors such that

T∑
t=2

1(qt 6= qt−1) = S − 1,

but in addition the multiset U = {q1, q2, . . . , qT} has only n distinct elements for some
n � S, n � N, meaning there are many “switching-backs” happening. The total
number of switches are assumed to small as well, in particular, we assume S/T ≤ 1/2.
The regret is defined in the usual way:

RT (q1, q2, . . . , qT ) =
T∑
t=1

〈pt − qt, lt〉.

To get started, recall the regret bound for Fixed Share derived in the class, which does
not exploit the fact that n� S and n� N :

RFixed Share
T (q1, q2, . . . , qT ) = O

(√
TS ln(

NT

S
)

)
.



Handout : Problem Set 2 3

q1 q2

T2

q3

T3

q2

T4

q3

T5

q1

T6T1

Figure 2: Illustrating the switching and different competitor distributions for n = 3 and
S = 5. The competitor distribution remains unchanged during each sub-intervals.

(a) To get a sense of an achievable regret in this setting, consider the case when qt
only concentrates on one expert it for each t. Similar to what we did for the
Fixed-Share algorithm, create a set of meta-experts M satisfying the constraints
of the problem:

M = {e ∈ [N ]T :
T∑
t=2

1(e(t) 6= e(t− 1)) = S − 1 and |{e(1), e(2), . . . , e(T )| = n}

and run the Hedge algorithm on M. Show that this algorithm (which is rather
expensive to implement) achieves the following regret bound:

RHedge
T (e1, e2, . . . , eT ) ≤ 2

√
TS ln

nTe

S
.

Hint: Use the standard inequality
(
n
k

)
≤ (ne

k
)k.

(b) To get roughly the same regret bound efficiently, consider the following generalized
version of the Fixed-Share algorithm as described below:

pt =
t∑

τ=1

αt(τ)p̃τ

p̃t+1(i) ∝ pt(i) exp(−ηlt(i)),∀i,

where p̃1 is the uniform distribution and αt ∈ ∆(t) is some distribution of the
history. Hence, the generalized Fixed Share mixes all past predictions to obtain



4 Problem Set 2

the current prediction. The regular Fixed Share is clearly a special case where
αt(t) = 1− α and αt(1) = α and the rest of the mixing coefficients are zero.
Let st = max{s ∈ [T ] : s < t, qs = qt} be the most recent past appearance time of
the competitor qt (st = 0 if the above set is empty). Prove that

〈pt − qt, lt〉 ≤
ln

(
1

αt(st+1)

)
+D(qt||p̃st+1)−D(qt||p̃t+1)

η
+ η. (1)

(c) From the above equation, conclude the following regret bound:

RT (q1, q2, . . . , qT ) ≤ 1

η

T∑
t=1

ln

(
1

αt(st + 1)

)
+
n lnN

η
+ ηT. (2)

Hint: Use the fact that there are only n different competitor distributions. De-
compose the summation with respect to each of these distributions and use a
telescoping argument.

(d) (Uniform Mixing) For t ≥ 2, consider the uniform mixing sequence αt(t) = 1−α
and αt(τ) = α

t−1 ,∀τ < t, for some tunable parameter 0 ≤ α ≤ 1. Show that, with
optimal tuning of the parameters α, η, the generalized Fixed Share algorithm enjoys
the following regret bound:

RT (q1, q2, . . . , qT ) ≤ 2
√
T (3S lnT + n lnN).

Hint: Use the fact that (with proof)

(1− x) ln
1

1− x
≤ x ln

1

x
, ∀ 0 ≤ x ≤ 1/2.

(e) (Decaying Mixing) Next consider the time-decaying mixing sequence αt(t) =
1−α and αt(τ) = α

(t−τ)Zt
,∀τ < t, with Zt =

∑t−1
τ=1

1
t−τ ≤ ln(t). Show that, with the

optimal tuning of the parameters, the generalized Fixed Share algorithm achieves
the following regret bound:

RT (q1, q2, . . . , qT ) ≤ 2

√
T

(
S ln(lnT ) + 3S ln

nT

S
+ n lnN

)
.

Hint: You may need to use Jensen’s inequality and a simple double counting
argument.


