Problem Set 2

- This problem set is due on February 24, 2020.
- Each problem carries 10 points.
- Collaboration is not permitted. Each student must submit his/her own work.
 - 1. (Probabilistic Method) Probabilistic method is a simple yet powerful tool to prove existential results. Consider the following general problem statement - we are given a set of real numbers $S = \{v_1, v_2, \ldots, v_N\}$ and a threshold λ . We want to show that there exists an element $v_i \in S$ such that $v_i \geq \lambda$. In order to solve this problem via probabilistic method, we first define a suitable probability distribution $\mathbf{p} = (p_1, p_2, \ldots, p_N)$ over the set S. Next, we compute the expectation $E_{\mathbf{p}} = \sum_{i=1}^{N} p_i v_i$. If $E_{\mathbf{p}} \geq \lambda$, the existence of the desired element follows immediately (convince yourself!). The trick here is to pick a suitable distribution \mathbf{p} depending on the problem at hand. Solve the following problems using the above principle:
 - (a) Let G = (V, E) be a simple graph and let d_v denote the degree of of the vertex v. An *independent set* is a set of vertices no pair of which is joined by an edge. Let $\alpha(G)$ be the size of the largest independent set of G. Show that

$$\alpha(G) \ge \sum_{v \in V} \frac{1}{d_v + 1}.$$

(b) Let A be an arbitrary binary $n \times n$ matrix $(i.e., A_{i,j} \in \{0, 1\}, \forall i, j.)$ Show that there exists a column vector $b \in \{-1, +1\}^n$ so that $||Ab||_{\infty} = O(\sqrt{n \log n})^1$.

¹ HINT: Let the elements of b be i.i.d. uniform in $\{\pm 1\}$. Bound the MGF of $||Ab||_{\infty}$ by the sum of MGFs of $|A_ib|, \forall i$, where A_i denotes the i^{th} row of A. Finally, optimize the argument of the MGF to get the best bound possible.

2. (Random Walk) Let $\{X_n\}_{n\geq 1}$ be a sequence of i.i.d. random variables with

$$\mathbb{P}(X_1 = 1) = p, \mathbb{P}(X_1 = -1) = 1 - p,$$

where $0 \le p \le 1$ and $p \ne \frac{1}{2}$. Let $S_0 = 0$ and $S_n = S_{n-1} + X_n, n \ge 1$. For each $n \ge 1$, define the event $A_n = \{\omega : S_n(\omega) = 0\}$ and let $A = \limsup A_n$. Let \mathcal{F}_{∞} be the tail σ -algebra corresponding to the sequence of r.v.s $\{X_n\}_{n\ge 1}$. Show that

¹Recall, for a vector x, $||\overline{x}||_{\infty} := \max_i |x_i|$.

- (a) $A \notin \mathcal{F}_{\infty}$.
- (b) Nonetheless, $\mathbb{P}(A) \in \{0, 1\}$.

[†] HINT: Use Stirling's approximation.

- 3. (\mathcal{L}^2 vs. \mathcal{L}^1)
 - (a) Let X_1, X_2 be i.i.d. non-negative random variables such that $X_1 \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ but $X_1 \notin \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Let $Y = \min\{X_1, X_2\}$. Show that $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$.
 - (b) (Generalization) Let X_1, X_2, \ldots, X_n be a collection of n i.i.d. non-negative random variables such that $X_1 \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ but $X_1 \notin \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Let Y be the *Second largest* random variable in the above collection ². Show that $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$.

4. (Conditional Expectation)

(a) Let the random variables $\{Z_n\}_{n\geq 1}$ be independent, each with finite mean. Let $X_0 = a$, and $X_n = a + Z_1 + Z_2 + \ldots + Z_n$ for $n \geq 1$. Prove that

 $\mathbb{E}(X_{n+1}|\sigma(X_1, X_2, \dots, X_n)) = X_n + \mathbb{E}(Z_{n+1}).$

(b) Suppose that $X, Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ such that

$$\mathbb{E}(X|\sigma(Y)) = Y, \mathbb{E}(Y|\sigma(X)) = X$$
 a.s.

Show that X = Y almost surely.

- (c) (Linear Estimation) Let X_1, X_2, \ldots, X_n be random variables with zero expectations and covariance matrix V^3 . Using the orthogonality principle, find the linear map $h(\cdot)$ of $\{X_i\}_{i=1}^n$ which minimizes the mean squared error $\mathbb{E}\{(Y h(X_1, X_2, \ldots, X_n))^2\}$.
- 5. (Kolmogorov-Hajek-Renyi inequality) Let $\{Z_n\}_{n\geq 0}$ be a Martingale sequence with $\mathbb{E}(Z_0) = 0$ and let $\{v_j\}_{j\geq 0}$ be a sequence of non-decreasing constants with $v_0 = 0$. Prove that

$$\mathbb{P}(|Z_j| \le v_j, \quad \forall 1 \le j \le n) \ge 1 - \sum_{j=1}^n \mathbb{E}(Z_j - Z_{j-1})^2 / v_j^2.$$

²In order-statistic notation $Y = X_{(n-1)}$.

³This means that $V_{ij} = \mathbb{E}(X_i X_j), 1 \leq i, j \leq n.$