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Instructor: Abhishek Sinha

Problem Set 2

• This problem set is due on March 15, 2021.
• Each problem carries 10 points.
• Collaboration is not permitted. Each student must submit his/her own work.

1. (Random Walk) Let {Xn}n≥1 be a sequence of i.i.d. random variables with

P(X1 = 1) = p,P(X1 = −1) = 1− p,

where 0 ≤ p ≤ 1 and p 6= 1
2
. Let S0 = 0 and Sn = Sn−1 + Xn, n ≥ 1. For each n ≥ 1,

define the event An = {ω : Sn(ω) = 0} and let A = lim supAn. Let F∞ be the tail
σ-algebra corresponding to the sequence of r.v.s {Xn}n≥1. Show that

(a) A /∈ F∞.

(b) Nonetheless, P(A) ∈ {0, 1}.

Hint: Use Stirling’s approximation.

2. (Conditional Expectation)

(a) Let the random variables {Zn}n≥1 be independent, each with finite mean. Let
X0 = a, and Xn = a+ Z1 + Z2 + . . .+ Zn for n ≥ 1. Prove that

E
(
Xn+1|σ(X1, X2, . . . , Xn)

)
= Xn + E(Zn+1).

(b) Suppose that X, Y ∈ L2(Ω,F ,P) such that

E(X|σ(Y )) = Y,E(Y |σ(X)) = X a.s.

Show that X = Y almost surely.

(c) (Linear Estimation) Let X1, X2, . . . , Xn be random variables with zero ex-
pectations and covariance matrix V 1. Using the orthogonality principle, find
the linear map h(·) of {Xi}ni=1 which minimizes the mean squared error E{(Y −
h(X1, X2, . . . , Xn))2}.

1This means that Vij = E(XiXj), 1 ≤ i, j ≤ n.
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3. (Kolmogorov-Hajek-Renyi inequality)

(a) Show that if X is a non-negative supermartingale and T is a stopping time, then

E(XT ;T <∞) ≤ E(X0).

Hence or otherwise, show that P(supnXn ≥ c) ≤ E(X0)/c.

(b) Let {Zn}n≥0 be a Martingale sequence with Z0 = 0 and let {vj}j≥0 be a sequence
of non-decreasing constants with v0 = 0. Prove that

P(|Zj| ≤ vj, ∀1 ≤ j ≤ n) ≥ 1−
n∑

j=1

E(Zj − Zj−1)
2/v2j .

Hint: Define the stopping time N to be the first time for which |ZN | > vN . Let
it be equal to n if |Zj| ≤ vj,∀1 ≤ j ≤ n. Now analyze the corresponding stopped
Martingale.

4. (Randomized polynomial-time solvability of 2-SAT) In this problem, we will
analyze a simple randomized algorithm for 2−satisfiability.

(a) Consider a supermartingale {Xt}t≥1 that takes values in {0, 1, 2, . . . , n}, with X0 =
s. Set Dt := Xt −Xt−1, t ≥ 1 and assume that for all t ≥ 1 we have E(D2

t+1|Ft) ≥ σ2,
for some constant σ2. We are interested in T , the number of steps needed for Xt to
reach 0. Show that

E(T ) ≤ 2ns− s2

σ2
≤ n2

σ2
.

(b) Recall the classic Boolean Satisfiability problem 2. Show that the following simple
randomized polynomial time algorithm will find a satisfying assignment (given that it
exists) in expected quadratic time.
Given a 2-CNF formula φ with n variables, pick an arbitrary initial assignment a0. If
φ is not satisfied by a0, pick an arbitrary unsatisfied clause C0. Choose a literal of C0

uniformly at random and flip the value of that variable to obtain assignment a1. Using
the result of part (a), show that the algorithm will find a satisfying assignment (given
that it exists) after at most O(n2) rounds in expectation.

5. (Controlling a spaceship)

(a) Imagine that you are the captain of a spaceship currently located at a distance of
R0 from the solar system. Your objective is to steer the spaceship into the solar
system, which is assumed to be a ball of radius r < R0 centered around the Sun
located at the origin. You can set the distance to be traveled by the space-ship in
each hop based on the available information. However, due to some unfortunate
mechanical failures, you can no longer specify the direction of movement. As

2https://www2.cs.duke.edu/courses/fall14/compsci330/notes/scribe23.pdf
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a result, at every hop, the spaceship moves in a direction chosen uniformly at
random over a 3D sphere of a radius of your choice from its previous location.
Let Rn be the distance from the Sun to your spaceship after n hops. Show that
irrespective of the control strategy adopted, the sequence { 1

Rn
}n≥1 is a super-

martingale and that for any strategy which always sets a distance no greater than
that from Sun to your spaceship, { 1

Rn
}n≥1 constitutes a Martingale sequence.

Hence or otherwise, show that

P[The spaceship enters into the solar system] ≤ r/R0.

Hint: You may need to use a classic result from high-school physics on the grav-
itational potential of a uniform spherical shell to evaluate an integral appearing
in this problem.

(b) Assume that after working on the faulty engine for hours, you have been able to
confine the random motion of the spaceship along a fixed plane passing through
the Sun. However, the next hop-length is now automatically set to the current
distance to the Sun. In other words, if the distance to the Sun from the spaceship
after the nth hop is Rn, in the next hop, the spaceship is moved uniformly at
random on a circle with center at the current location and radius Rn. Show that
the spaceship gets into the solar system almost surely.

Hint: Define the r.v.s Vn = lnRn − lnRn−1, n ≥ 1. Show that {Vn}n≥1 are i.i.d.
with zero mean and non-zero but finite variance. Now consider the summation
Sn =

∑n
k=1 Vk. Using CLT, show that P(infn Sn < ln(r0/R0)) = 1 and conclude

the result.


