Problem Set 1

• This problem set is due on February 24, 2021. Please email your solution (preferably typeset in $\mathbb{F}(\mathbb{F}(\mathbb{X}))$ to Samrat.

- Each problem carries 10 points.
- Collaboration is not permitted.
	- 1. (Symmetrization) For a set T, let $(X_1(t), X_2(t), \ldots, X_N(t))$ be a collection of N zero-mean independent random variables indexed by each $t \in T$. Let $\epsilon_1, \epsilon_2, \ldots, \epsilon_N$ be independent symmetric Bernoulli random variables. Prove that

$$
\frac{1}{2} \mathbb{E} \sup_{t \in T} \sum_{i=1}^{N} \epsilon_i X_i(t) \leq \mathbb{E} \sup_{t \in T} \sum_{i=1}^{N} X_i(t) \leq 2 \mathbb{E} \sup_{t \in T} \sum_{i=1}^{N} \epsilon_i X_i(t).
$$

HINT: Consider another independent copy of the r.v.s $\mathbf{X}(t)$.

2. (Minimum Expectation) Let the random variable $X \in [0,1]$ have a continuous density function $p(x)$. In other words, for any Borel set $B \in \mathbb{B}([0,1])$, we have

$$
\mathbb{P}(X \in B) = \int_B p(x) dx,
$$

Assume that the density $p(x)$ is non-decreasing in [0, 1]. Note that $p(\cdot)$ needs not be differentiable. Find the minimum value of $\mathbb{E}_p(X)$ over all such density functions $p(\cdot)$.

3. (A Generalization of the first Borel-Cantelli Lemma) Show that the following statements are equivalent (*i.e.*, $a \implies b$ and $b \implies a$)

(a) For each $\epsilon > 0$, \exists an event A such that $\mathbb{P}(A) \geq 1 - \epsilon$ and $\sum_{n=1}^{\infty} \mathbb{P}(A_n \cap A) < \infty$. (b) $\mathbb{P}(\limsup A_n) = 0.$

4. (Strong Law for Normal r.v.s) (a) Prove that if G is a random variable with the normal $N(0, 1)$ distribution, then, for $x > 0$,

$$
\mathbb{P}(G > x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-x^{2}/2} dx \le \frac{1}{x\sqrt{2\pi}} e^{-x^{2}/2}.
$$

(b) Let X_1, X_2, \ldots be a sequence of independent $N(0, 1)$ variables. Prove that, with probability 1, $L \leq 1$, where

$$
L := \limsup (X_n / \sqrt{2 \log n}).
$$

(c) Let $S_n := X_1 + X_2 + \ldots + X_n$. Recall that $S_n/$ √ \overline{n} has the $N(0, 1)$ distribution. Prove that

$$
\mathbb{P}(|S_n| < 2\sqrt{n\log n}, \text{ev}) = 1.
$$

5. ('Cauchy Sequence') Let's call a sequence of random variables $\{X_n\}_{n\geq 1}$ to be *Cauchy* in probability if for all $\epsilon > 0$, there exists an N_{ϵ} such that $\mathbb{P}(|X_m - X_n| > \epsilon) < \epsilon$ for $m, n > N_{\epsilon}.$

(a) Using the first Borel-Cantelli Lemma show that there is a subsequence $\{X_{n_k}\}_{k\geq 1}$ and a random variable X such that $\lim_k X_{n_k} = X$ w.p. 1. (b) Conclude that $X_n \to_p X$.

6. $(\mathcal{L}^2$ **vs.** \mathcal{L}^1 Let X_1, X_2, \ldots, X_n be a collection of *n* i.i.d. non-negative r.v.s such that $\mathbb{E}(X_1) < \infty$ but $\mathbb{E}(X_1^2) = \infty$. Sort the r.v.s in decreasing order $X_{(1)}(\omega) \ge X_{(2)}(\omega) \ge$ $\ldots \geq X_{(n)}(\omega) \geq 0$. Let the r.v. $Y(\omega) := X_{(2)}(\omega)$ be the second largest in the above collection. Show that $\mathbb{E}(Y^2) < \infty$.