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Introduction

Set-up

Given a wired network G(V ,E) |V | = n, capacity of edge e ∈ E is u(e).

Connection requests come sequentially in an online fashion (no apriori probability
distributions of arrivals).

Each request demands certain amount of network resources (e.g., a
source-to-destination connection with certain bandwidth for certain time-span.)
and is willing to pay certain price, if serviced.

We may either accept the request or reject it.

No Queuing: Acceptance means guaranteed service.

Problem: Make optimal admission decision and routing decisions.
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Introduction

Set-up, formally

The i th connection request is formally represented by the following tuple

βi = (si , ti , ri (τ),T s(i),T f (i), ρ(i))

si : origin of connection.
ti : destination of connection.
T s(i): starting time of service.
T f (i): completion time of service.
ri (τ): traffic rate demanded between time [T s(i),T f (i)]. Assumed to be zero
outside this interval.
ρ(i): utility received by the controller upon serving the request.

Decision: The controller either accepts or rejects βi . If accepted, it assigns a
si − ti path Pi to βi , otherwise Pi ← φ.
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Introduction

Set-Up Contd.

Capacity Constraints must be respected at all times. Define the load on edge e
before reception of kth request as

λe(τ, k) =
∑

e∈Pi ,i<k

ri (τ)

u(e)

We require λe(τ, k) ≤ 1, ∀e, k, τ .

Regularity Assumption (1): Since we are looking for throughput-optimization,
utility is approximately proportional to bandwidth-time product.
In other words, define the duration of the j th connection-request
T (j) := T f (j)− T s(j). Then, there exists a universal constant F such that

1 ≤
1

n

ρ(j)

rj (τ)T (j)
≤ F
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Introduction

Regularity Assumption (2) : small-sized requests

Regularity Assumption (2): Define T = maxj T (j) and µ
def
= 2nTF + 1.

We assume that individual requests for bandwidths is a small fraction of the
capacity of the edges, i.e.

rj (τ) ≤
mine(u(e))

logµ
, ∀j , τ ∈ [T s(j),T f (j)]

This assumption, in essence implies that requests are fluid-like and we can apply
control in a fine-grained fashion.

Algorithm Overview

As the j th connection-request comes, a weight-vector we(j , τ) is computed for all
τ ∈ [T s(j),T f (j)].

A shortest path is computed on the graph based on these weight-functions,
summed over from [T s(j),T f (j)], with cost v(j).

If the benefit for serving the request is more than the cost, i.e. v(j) ≤ ρ(j) then
the request is served along the shortest computed path. Else, the request is
rejected.
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Algorithm

Admission Control and Routing

Online Control Algorithm A

On the arrival of j th connection-request, associate a weight ce(τ, j) for each edge
e, which is exponential in the current-load λe(τ, j) (before the request has come)

ce(τ, j) = u(e)(µλe (τ,j) − 1), ∀τ ∈ [T s(j),T f (j)]

Find a shortest s(j)− t(j) path with the weight of the edge e being

we =
∑
τ

r(τ)
u(e)

ce(τ, j).

If the cost of the shortest-path is less than or equal to ρ(j) then accept the
request and route it along the computed shortest path, else reject it.

Properties of the Algorithm A

The algorithm is online, does not require any statistical information, and have
low-complexity O(n2T ).

Guaranteed service on acceptance, no-queuing, online routing.

Is competitively optimal (within O(log n) factor) and is optimal among all online
policies.
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Analysis

Analysis-I: Feasibility

First we need to show that the algorithm is feasible, i.e., it always respects the
edge-capacity constraint.

Intuitively, it follows from the fact that the algorithm rejects any request whose
routing cost exceeds the benefit and that any request is of small size.

Lemma (Feasibility of the Online Algorithm)

For all edges e ∈ E and at all times τ , we have∑
i∈A,e∈Pi

ri (τ) ≤ ue (1)
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Analysis

Proof of Feasibility

Assume that βj be the first connection that was accepted and caused the relative load
of edge e to exceed 1.

Hence by definition, there is a slot τ ∈ [T s(j),T f (j)] such that λe(τ, j) > 1− rj (τ)

u(e)
(so

that the edge overload). Let us estimate the cost at which the edge e was included in
the path

ce(τ, j)/u(e) = µλe (τ,j) − 1

≥ µ
1−

rj (τ)

u(e) − 1

(a)

≥ µ
1− 1

log(µ) − 1

=
µ

2
− 1 = TFn

Where (a) follows from the small rate assumption of individual requests.

Hence, the cost of the edge at time τ alone is = ce (τ,j)
u(e)

rj (τ) = rj (τ)TFn
(b)

≥ ρ(j),

where (b) follows from the bounds on benefits. Thus, the j th connection-request
violates the criteria for admission and concludes the proof of feasibility.
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Analysis

Competitive Ratio

Theorem

The online algorithm A is optimal within a multiplicative-factor of O(log n).

This theorem is proved in two simple lemmas.

Lemma ( Lower-bound on Accumulated profit)

Let I be the set of indices of connection accepted by the online algorithm and let k be
the index of the last connection, then∑

j∈I
ρ(j) ≥

1

2 log µ

∑
τ

∑
e

ce(τ, k + 1) (2)

Finally, it is shown that the profit of the requests left out by A but accepted by the
off-line optimal algorithm can not be large.

Lemma (Upper-bound on Relative loss)

Let Q be the set of indices of the connections that were admitted by the off-line
algorithm but were rejected by the on-line algorithm. Denote l = max{Q}. Then∑

j∈Q
ρ(j) ≤

∑
τ

∑
e

ce(τ, l) (3)
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Proof of Lemma 1: Lower-bound on the accumulated profit

Suppose that we admit the j th connection request βj . Since the requests are small,
cost of an edge should not change much because of its admission. In particular,
consider an edge e ∈ Pj . The change in cost can be calculated as follows :

ce(τ, j + 1)− ce(τ, j) = u(e)(µ
λe (τ,j)+

rj (τ)

u(e) − µλe (τ,j))

= u(e)µλe (τ,j)(2
log(µ)

rj (τ)

u(e) − 1)

By our assumption of small requests (i.e.,
rj (τ)

u(e)
≤ 1

log(µ)
), and the fact that 2x − 1 ≤ x

for 0 ≤ x ≤ 1, we conclude that

ce(τ, j + 1)− ce(τ, j) ≤ ce(τ, j)
rj (τ)

u(e)
log µ

Summing over all e and τ and using the fact that βj was admitted, we have

∑
e,τ

[ce(τ, j + 1)− ce(τ, j)] ≤ log µ
∑

e∈Pj ,τ

ce(τ, j)
rj (τ)

u(e)
≤ ρ(j) log µ

Summing over all j ∈ I completes the proof. �
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Analysis

Proof of Lemma 2: Upper-bound on Relative Loss

Since load at an edge at a slot can only increase with more requests, we have for all
ce(τ, j) ≤ ce(τ, l), ∀j , e, τ . Consider a request j ∈ Q. Since it was rejected by the
online algorithm, we must have

ρ(j) ≤
∑
τ

∑
e∈P′

j

rj (τ)ce(τ, j)/u(e) ≤
∑
τ

∑
e∈P′

j

rj (τ)ce(τ, l)/u(e)

Summing over all j ∈ Q, we have

∑
j∈Q

ρ(j) ≤
∑
τ

∑
e

ce(τ, l)
∑

j :e∈P′
j

rj (τ)

u(e)

(∗)

≤
∑
τ,e

ce(τ, l)

where (∗) follows because the offline algorithm is not allowed to over load the edge at
any slot. �

Proof of Approximation Guarantee: Combine the above two lemmas. �
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