Throughput-Competitive Online Routing -Awerbuch, Azar, Plotkin; FOCS 1993

Abhishek Sinha Laboratory for Information and Decision Systems

MIT

Talk at: CNRG Meeting

March 10, 2016

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

1/22

Outline

Outline

Set-up

- Given a wired network G(V, E) |V| = n, capacity of edge $e \in E$ is u(e).
- Connection requests come sequentially in an online fashion (no apriori probability distributions of arrivals).
- Each request demands certain amount of network resources (e.g., a source-to-destination connection with certain bandwidth for certain time-span.) and is willing to pay certain price, if serviced.
- We may either accept the request or reject it.
- No Queuing: Acceptance means guaranteed service.
- Problem: Make optimal admission decision and routing decisions.

Set-up, formally

• The *i*th connection request is formally represented by the following tuple

$$\beta_i = (\mathbf{s}_i, \mathbf{t}_i, \mathbf{r}_i(\tau), T^s(i), T^f(i), \rho(i))$$

 s_i : origin of connection.

t_i: destination of connection.

 $T^{s}(i)$: starting time of service.

 $T^{f}(i)$: completion time of service.

 $r_i(\tau)$: traffic rate demanded between time $[T^s(i), T^f(i)]$. Assumed to be zero outside this interval.

 $\rho(i)$: utility received by the controller upon serving the request.

• Decision: The controller either accepts or rejects β_i . If accepted, it assigns a $s_i - t_i$ path P_i to β_i , otherwise $P_i \leftarrow \phi$.

イロン イロン イヨン イヨン 三日

Set-Up Contd.

• Capacity Constraints must be respected at all times. Define the load on edge *e* before reception of *k*th request as

$$\lambda_e(au, k) = \sum_{e \in P_i, i < k} rac{r_i(au)}{u(e)}$$

We require $\lambda_e(\tau, k) \leq 1, \forall e, k, \tau$.

Regularity Assumption (1): Since we are looking for throughput-optimization, utility is approximately proportional to bandwidth-time product. In other words, define the duration of the *j*th connection-request T(j) := T^f(j) - T^s(j). Then, there exists a universal constant F such that

$$1 \leq \frac{1}{n} \frac{\rho(j)}{r_j(\tau)T(j)} \leq F$$

Regularity Assumption (2) : small-sized requests

 Regularity Assumption (2): Define T = max_j T(j) and μ ^{def} = 2nTF + 1. We assume that individual requests for bandwidths is a small fraction of the capacity of the edges, i.e.

$$r_j(au) \leq rac{\min_e(u(e))}{\log \mu}, \quad \forall j, au \in [T^s(j), T^f(j)]$$

This assumption, in essence implies that requests are *fluid-like* and we can apply control in a fine-grained fashion.

Regularity Assumption (2) : small-sized requests

 Regularity Assumption (2): Define T = max_j T(j) and μ ^{def} = 2nTF + 1. We assume that individual requests for bandwidths is a small fraction of the capacity of the edges, i.e.

$$r_j(au) \leq rac{\min_e(u(e))}{\log \mu}, \quad \forall j, au \in [T^s(j), T^f(j)]$$

This assumption, in essence implies that requests are *fluid-like* and we can apply control in a fine-grained fashion.

Algorithm Overview

- As the j^{th} connection-request comes, a weight-vector $w_e(j, \tau)$ is computed for all $\tau \in [T^s(j), T^f(j)]$.
- A shortest path is computed on the graph based on these weight-functions, summed over from [T^s(j), T^f(j)], with cost v(j).
- If the benefit for serving the request is more than the cost, i.e. v(j) ≤ ρ(j) then the request is served along the shortest computed path. Else, the request is rejected.

- Algorithm

Outline

- Algorithm

Admission Control and Routing

Online Control Algorithm ${\cal A}$

 On the arrival of jth connection-request, associate a weight c_e(τ, j) for each edge e, which is exponential in the current-load λ_e(τ, j) (before the request has come)

$$c_e(\tau,j) = u(e)(\mu^{\lambda_e(\tau,j)}-1), \quad \forall \tau \in [T^s(j), T^f(j)]$$

- Find a shortest s(j) t(j) path with the weight of the edge e being $w_e = \sum_{\tau} \frac{r(\tau)}{u(e)} c_e(\tau, j).$
- If the cost of the shortest-path is less than or equal to $\rho(j)$ then accept the request and route it along the computed shortest path, else reject it.

- Algorithm

Admission Control and Routing

Online Control Algorithm ${\cal A}$

 On the arrival of jth connection-request, associate a weight c_e(τ, j) for each edge e, which is exponential in the current-load λ_e(τ, j) (before the request has come)

$$c_e(\tau,j) = u(e)(\mu^{\lambda_e(\tau,j)}-1), \quad \forall \tau \in [T^s(j), T^f(j)]$$

- Find a shortest s(j) t(j) path with the weight of the edge e being $w_e = \sum_{\tau} \frac{r(\tau)}{u(e)} c_e(\tau, j).$
- If the cost of the shortest-path is less than or equal to $\rho(j)$ then accept the request and route it along the computed shortest path, else reject it.

Properties of the Algorithm ${\cal A}$

- The algorithm is *online*, does not require any statistical information, and have low-complexity $O(n^2T)$.
- Guaranteed service on acceptance, no-queuing, online routing.
- Is competitively optimal (within $\mathcal{O}(\log n)$ factor) and is optimal among all online policies.

Outline

Analysis-I: Feasibility

First we need to show that the algorithm is *feasible*, i.e., it *always* respects the edge-capacity constraint.

Analysis-I: Feasibility

First we need to show that the algorithm is *feasible*, i.e., it *always* respects the edge-capacity constraint.

Intuitively, it follows from the fact that the algorithm rejects any request whose routing cost exceeds the benefit and that any request is of small size.

Lemma (Feasibility of the Online Algorithm) For all edges $e \in E$ and at all times τ , we have

$$\sum_{e \in \mathcal{A}, e \in P_i} r_i(\tau) \le u_e \tag{1}$$

Proof of Feasibility

Assume that β_j be the first connection that was accepted and caused the relative load of edge e to exceed 1.

Hence by definition, there is a slot $\tau \in [T^s(j), T^f(j)]$ such that $\lambda_e(\tau, j) > 1 - \frac{r_j(\tau)}{u(e)}$ (so that the edge overload). Let us estimate the cost at which the edge *e* was included in the path

$$c_{e}(\tau, j)/u(e) = \mu^{\lambda_{e}(\tau, j)} - 1$$

$$\geq \mu^{1 - \frac{r_{j}(\tau)}{u(e)}} - 1$$

$$\stackrel{(a)}{\geq} \mu^{1 - \frac{1}{\log(\mu)}} - 1$$

$$= \frac{\mu}{2} - 1 = TFn$$

Where (a) follows from the small rate assumption of individual requests.

Hence, the cost of the edge at time τ alone is $=\frac{c_e(\tau,j)}{u(e)}r_j(\tau) = r_j(\tau)TFn \stackrel{(b)}{\geq}\rho(j)$, where (b) follows from the bounds on benefits. Thus, the *j*th connection-request violates the criteria for admission and concludes the proof of feasibility.

Competitive Ratio

Theorem

The online algorithm A is optimal within a multiplicative-factor of $O(\log n)$.

This theorem is proved in two simple lemmas.

Lemma (Lower-bound on Accumulated profit)

Let \mathcal{I} be the set of indices of connection accepted by the online algorithm and let k be the index of the last connection, then

$$\sum_{j\in\mathcal{I}}\rho(j) \ge \frac{1}{2\log\mu}\sum_{\tau}\sum_{e}c_{e}(\tau,k+1)$$
(2)

Competitive Ratio

Theorem

The online algorithm A is optimal within a multiplicative-factor of $O(\log n)$.

This theorem is proved in two simple lemmas.

Lemma (Lower-bound on Accumulated profit)

Let \mathcal{I} be the set of indices of connection accepted by the online algorithm and let k be the index of the last connection, then

$$\sum_{j\in\mathcal{I}}\rho(j)\geq \frac{1}{2\log\mu}\sum_{\tau}\sum_{e}c_{e}(\tau,k+1)$$
(2)

Finally, it is shown that the profit of the requests left out by ${\cal A}$ but accepted by the off-line optimal algorithm can not be large.

Competitive Ratio

Theorem

The online algorithm A is optimal within a multiplicative-factor of $\mathcal{O}(\log n)$.

This theorem is proved in two simple lemmas.

Lemma (Lower-bound on Accumulated profit)

Let $\mathcal I$ be the set of indices of connection accepted by the online algorithm and let k be the index of the last connection, then

$$\sum_{j \in \mathcal{I}} \rho(j) \ge \frac{1}{2\log \mu} \sum_{\tau} \sum_{e} c_e(\tau, k+1)$$
(2)

Finally, it is shown that the profit of the requests left out by ${\cal A}$ but accepted by the off-line optimal algorithm can not be large.

Lemma (Upper-bound on Relative loss)

Let Q be the set of indices of the connections that were admitted by the off-line algorithm but were rejected by the on-line algorithm. Denote $I = \max{Q}$. Then

$$\sum_{j \in \mathcal{Q}} \rho(j) \le \sum_{\tau} \sum_{e} c_e(\tau, l)$$
(3)

18/22

Proof of Lemma 1: Lower-bound on the accumulated profit

Suppose that we admit the j^{th} connection request β_j . Since the requests are small, cost of an edge should not change much because of its admission. In particular, consider an edge $e \in \mathcal{P}_i$. The change in cost can be calculated as follows :

Proof of Lemma 1: Lower-bound on the accumulated profit

Suppose that we admit the j^{th} connection request β_j . Since the requests are small, cost of an edge should not change much because of its admission. In particular, consider an edge $e \in \mathcal{P}_j$. The change in cost can be calculated as follows :

$$c_e(\tau, j+1) - c_e(\tau, j) = u(e)\left(\mu^{\lambda_e(\tau, j) + \frac{r_j(\tau)}{u(e)}} - \mu^{\lambda_e(\tau, j)}\right)$$
$$= u(e)\mu^{\lambda_e(\tau, j)}\left(2^{\log(\mu)\frac{r_j(\tau)}{u(e)}} - 1\right)$$

By our assumption of small requests (i.e., $\frac{r_j(\tau)}{u(e)} \leq \frac{1}{\log(\mu)}$), and the fact that $2^x - 1 \leq x$ for $0 \leq x \leq 1$, we conclude that

$$c_e(au, j+1) - c_e(au, j) \leq c_e(au, j) rac{r_j(au)}{u(e)} \log \mu$$

Summing over all e and τ and using the fact that β_j was admitted, we have

$$\sum_{e,\tau} [c_e(\tau,j+1) - c_e(\tau,j)] \le \log \mu \sum_{e \in \mathcal{P}_j,\tau} c_e(\tau,j) \frac{r_j(\tau)}{u(e)} \le \rho(j) \log \mu$$

Summing over all $j \in \mathcal{I}$ completes the proof.

Proof of Lemma 2: Upper-bound on Relative Loss

Since load at an edge at a slot can only increase with more requests, we have for all $c_e(\tau, j) \leq c_e(\tau, l), \forall j, e, \tau$. Consider a request $j \in Q$. Since it was rejected by the online algorithm, we must have

$$\rho(j) \leq \sum_{\tau} \sum_{e \in P'_j} r_j(\tau) c_e(\tau, j) / u(e) \leq \sum_{\tau} \sum_{e \in P'_j} r_j(\tau) c_e(\tau, l) / u(e)$$

Summing over all $j \in Q$, we have

$$\sum_{j \in \mathcal{Q}} \rho(j) \leq \sum_{\tau} \sum_{e} c_e(\tau, l) \sum_{j:e \in P'_j} \frac{r_j(\tau)}{u(e)} \stackrel{(*)}{\leq} \sum_{\tau, e} c_e(\tau, l)$$

where (*) follows because the offline algorithm is not allowed to over load the edge at any slot. \blacksquare

Proof of Lemma 2: Upper-bound on Relative Loss

Since load at an edge at a slot can only increase with more requests, we have for all $c_e(\tau, j) \leq c_e(\tau, l), \forall j, e, \tau$. Consider a request $j \in Q$. Since it was rejected by the online algorithm, we must have

$$\rho(j) \leq \sum_{\tau} \sum_{e \in P'_j} r_j(\tau) c_e(\tau, j) / u(e) \leq \sum_{\tau} \sum_{e \in P'_j} r_j(\tau) c_e(\tau, l) / u(e)$$

Summing over all $j \in Q$, we have

$$\sum_{j \in \mathcal{Q}} \rho(j) \leq \sum_{\tau} \sum_{e} c_e(\tau, l) \sum_{j:e \in P'_j} \frac{r_j(\tau)}{u(e)} \stackrel{(*)}{\leq} \sum_{\tau, e} c_e(\tau, l)$$

where (*) follows because the offline algorithm is not allowed to over load the edge at any slot. \blacksquare

Proof of Approximation Guarantee: Combine the above two lemmas.