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Introduction

Motivation

We consider the problem of optimally broadcasting packets in a multi-hop
wireless adhoc network

A primary measure of efficiency is throughput-optimality, i.e., policies that
achieve the entire capacity region

Vast literature for the Unicast problem (Backpressure policy), not so much for
other flow problems

Packet duplications are harder to deal with (no flow conservations)
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Introduction

Introduction

We study the Generalized Flow Problem and design throughput-optimal policies.

A Fundamental problem with wide ranging applications: Internet routing,
in-network function computations, live multi-media streaming, military
communications etc.

Topics of this talk:

1 Broadcast: Specialized dynamic algorithms that solve the throughput-optimal
broadcasting problem

It admits an inherently decentralized solution

2 Generalized Flow: A general algorithmic paradigm that efficiently solves all flow
problems (unicast+broadcast+multicast+anycast).
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Introduction

System Model

The Wireless Network is represented by a graph G(V ,E), where each node has an
omnidirectional antenna.

Packets arrive at a source node r i.i.d. at every slot at rate λ.

Due to the local broadcast nature of the wireless medium, packets transmitted by
a node i is heard at all of its out-neighbor j ∈ ∂+(i).

As a result, if two or more in-neighbors of a node transmits at a slot, it results in
a collision.

This talk considers collision-free schedules only. The set of all feasible
collision-free node activations is given by M.
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A wireless network and its feasible link activations under the primary interference constraints.
M = {s1, s2, s3, s4}
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Introduction

Wireless Broadcast: Problem Formulation

A feasible broadcast policy π ∈ Π executes the following two actions at every slot t :

Node Activation π(A): Activates a subset of nodes s(t) ∈M subject to the
underlying interference constraints.

Packet Scheduling π(S): The activated nodes locally broadcasts a set of
packets subject to the capacity/power constraints of the nodes.

Let Rπ(T ) denote the number of packets received in common by all nodes under
the action of a broadcast policy π.

The objective is to design a policy π such that for all λ < λ∗

lim inf
T→∞

Rπ(T )

T
= λ, w.p. 1,

where λ∗ is the broadcast capacity of the network.
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Hardness of Wireless Broadcasting

Hardness Result

Our first result in this point-to-multipoint broadcast setting is the following:

Theorem

Wireless Broadcast is NP-complete.

We also show that the problem remains hard even with the additional restriction
of DAG topology and no activation constraints.

This is surprising, because we showed earlier [Sinha et al, 2015, 2016] that the
problem is efficiently solvable in case of wireless DAGs with point-to-point links.

The hardness comes from the requirement of optimally distributing the packets,
which is intimately related to Boolean Constraint Satisfaction, described next.
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Hardness of Wireless Broadcasting

Hardness Reduction: Proof Sketch

Proof: Monotone Not all equal 3-SAT (MNAE 3-SAT) =⇒ Wireless
Broadcast.

MNAE-3SAT: Given a CNF formula C = ∧i (xi1 ∨ xi2 ∨ xi3 ) with no
complemented variable.

Problem: Does there exist a satisfying assignment such that each clause contain
at least one false literal? (Y/N)

Question: Can we broadcast two packets from the source r in two slots?

r

x1 x2 x3 xi xn

c1 c2 c3 cj cm

P = {0, 1}
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Throughput-Optimal Broadcast Policy

Routing of Packets: Connected Dominating Sets (CDS)

CDS: Defintion

A connected dominating set in a directed graph G(V ,E) and root r is a set of vertices
S ⊆ V such that:

For every v ∈ V , ∃ a directed path π = r → v1 → v2 . . . vi → v , where all nodes,
excepting possibly v , are in the set S .

1

2

3

4

The sets S1 = {1, 2}, S2 = {1, 3} are two CDS in this network.

Key observation: Route of a Packet

Every packet must be transmitted sequentially by a CDS in order to be broadcasted.
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Throughput-Optimal Broadcast Policy

Design of UMW: Motivation and Insight

Observation: Because of coupling, networked queues are harder to analyze and
control.

iid arrival

departure|Q1(t)

Q1(t) Q2(t)correlated
arrivals

IID arrivals to Q1 causes correlated arrivals to Q2

This motivates us to obtain a relaxed system, easier to analyze, yet, preserves
properties of interest (e.g., stability).

Question: How to obtain a good relaxation? Which constraints to relax?

Ans: The Precedence Constraints!
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Throughput-Optimal Broadcast Policy

Precedence Constraint: Example

Consider an incoming packet p with the specified broadcasting route CDSp = {1, 2}.

1

2

3

4p
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Throughput-Optimal Broadcast Policy

Precedence Constraint: Example

Consider an incoming packet p with the specified broadcasting route CDSp = {1, 2}.

1

2

3

4p

Slot 2

Observation: Due to the precedence, the packet p is transmitted by Node 2 after it has been

transmitted by Node 1
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Throughput-Optimal Broadcast Policy

Precedence Relaxation: Example

We maintain a virtual system where the packet p is injected to the virtual queues
Q̃1, Q̃2 immediately upon arrival.

1

2

3

4p

µ1(t)

µ2(t)

µ3(t)

µ4(t)

Q̃1(t)

Q̃2(t)

Q̃3(t)

Q̃4(t)

p̃

p̃

A Wireless Network G Virtual Queues
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Throughput-Optimal Broadcast Policy

Virtual Queues: Operation

Formally,

1 Associate a virtual queue Q̃v (t) with each node v of the graph.

2 Upon packet arrival:

Determine a CDS T∗
p (t) for the packet p

Immediately inject a new virtual packet to each virtual queue along in the CDS

This amounts to incrementing the queue counters in the CDS

3 Serve the virtual packets at the rate µ∗(t) as long as the corresponding virtual
queues are non-empty

Subject to the same link scheduling constraints (µ∗(t) ∈ M)

Don’t care whether the physical queue is empty or not.

Question: How to design the optimal controls: T∗p (t) and µ∗(t) ?
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Throughput-Optimal Broadcast Policy

Dynamics of the Virtual Queues Q̃(t)

The virtual queue lengths can be mathematically identified with an n-dimensional
vector taking values in Zn

+.

� Denote the (controlled) arrival to the VQ Q̃i by Ãi (t). Then, the virtual queues
evolve as:

Q̃i (t + 1) =
(
Q̃i (t) + Ãi (t)− µi (t))+, (Lindley recursion) (1)

� Note that, the arrivals to the virtual queues
(
Ãi (t), i ∈ V

)
are explicit control

variables at the source.

� Unlike the original system, given the controls, the virtual queues are independent of
each other. This makes their exact analysis tractable.
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Throughput-Optimal Broadcast Policy

Stabilizing Controls for Q̃(t) : Drift Analysis

A natural first-step is to design πUMW ≡
(
A(t),µ(t)

)
t≥0

, such that, it stabilizes

the virtual system {Q̃(t)}t≥0.

The policy consists of the routing decisions : routing Aπ(t), and scheduling
µπ(t).

Intuition: This control is likely to stabilize the physical queues as well
However, note that the dynamics of the physical queues depend explicitly on the packet
scheduling policy (e.g., FIFO, LIFO etc.). We will come to this issue later.

To stabilize the virtual queues, we choose the control that minimizes the drift of
the Quadratic Lyapunov (potential) function of the Virtual Queues.
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Throughput-Optimal Broadcast Policy

Derivation of the Control-Policy

Define a Quadratic Lyapunov (potential) function

L(Q̃(t))
def
=
∑
i∈V

Q̃2
i (t)

The one-slot drift of L(Q̃(t)) under any admissible policy π may be computed to
be

∆π(t)
def
= L(Q̃(t + 1))− L(Q̃(t))

≤ B + 2

(∑
i∈V

Q̃i (t)A(t)1(i ∈ Tπ(t))

︸ ︷︷ ︸
(a)

−
∑
i∈V

Q̃i (t)µπi (t)

︸ ︷︷ ︸
(b)

)
(2)

Where Tπ(t)∈ T and µπ(t) ∈M are routing and activation control variables
chosen for slot t.

The drift upper-bound (2) has a nice separable form and may be minimized over
the routing and activation controls individually.
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Throughput-Optimal Broadcast Policy

Optimal Routing Policy T ∗p (t)

Let T denote the set of all CDS in G. Minimizing the routing term (a), we get the
following optimal routing policy.

Optimal Routing : T∗p (t)

T∗p (t) ∈ arg min
T∈T

∑
i∈V

Q̃i (t)1(i ∈ T )

In other words, the drift minimizing routing policy is to route the incoming packet
along the Minimum Weight CDS, where each node i is weighted by the corresponding
virtual queue Q̃i (t).
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Throughput-Optimal Broadcast Policy

Example of Optimal Routing

1

2

3

4

Q̃1(t) = 10

Q̃2(t) = 5

Q̃3(t) = 7

Q̃4(t) = 0

p
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Throughput-Optimal Broadcast Policy

Example of Optimal Routing

11

2

3

4

Q̃1(t) = 10

Q̃2(t) = 5

Q̃3(t) = 7

Q̃4(t) = 0

p

Weight of CDS {1, 2} = 15

Weight of CDS {1, 3} = 17

Chosen route=MCDS= {1, 2}
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Throughput-Optimal Broadcast Policy

Optimal Node Scheduling Policy µ∗(t)

LetM denote the set of all non-interfering activations in G. Minimizing the scheduling
term (b) in the drift expression, we get the following optimal scheduling policy.

Optimal Scheduling : µ∗(t)

µ∗(t) ∈ arg max
M∈M

∑
i∈V

Q̃i (t)1(i ∈ M)

In other words, the drift minimizing node scheduling policy is to schedule the
Max-Weight activation, where each node i is weighted by the corresponding virtual
queue length Q̃i (t).
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Throughput-Optimal Broadcast Policy

Example of Optimal Scheduling
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Due to interference,
can activate only one node per slot
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Throughput-Optimal Broadcast Policy

Example of Optimal Scheduling

11

2

3

4

Q̃1(t) = 10

Q̃2(t) = 5

Q̃3(t) = 7

Q̃4(t) = 0

p

Due to interference,
can activate only one node per slot

Optimal Schedule = Activate the Node 1
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Throughput-Optimal Broadcast Policy

Stability of the Virtual Queue

Theorem 6: Strong Stability of Q̃(t)

Under the above routing and scheduling policy, for all arrival rate λ ≤ λ∗ the virtual
queue process is Strongly stable and has a limiting M.G.F, i.e.,

lim sup
T→∞

1

T

T∑
t=1

∑
i

E(Q̃i (t)) ≤ B

and,

lim sup
T→∞

E(exp(θ∗
∑
i

Q̃i (t))) ≤ C

for some finite B,C and strictly positive θ∗.

The above leads to the following :

Lemma: Sample Path bound on Virtual Queues

Under the same condition, we have∑
i

Q̃i (t) = O(log t), a.s.

51 / 63



Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions

Throughput-Optimal Broadcast Policy

Stability of the Virtual Queue

Theorem 6: Strong Stability of Q̃(t)

Under the above routing and scheduling policy, for all arrival rate λ ≤ λ∗ the virtual
queue process is Strongly stable and has a limiting M.G.F, i.e.,

lim sup
T→∞

1

T

T∑
t=1

∑
i

E(Q̃i (t)) ≤ B

and,

lim sup
T→∞

E(exp(θ∗
∑
i

Q̃i (t))) ≤ C

for some finite B,C and strictly positive θ∗.

The above leads to the following :

Lemma: Sample Path bound on Virtual Queues

Under the same condition, we have∑
i

Q̃i (t) = O(log t), a.s.

52 / 63



Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions

Throughput-Optimal Broadcast Policy

Optimal Control of the Physical Queues : Packet Scheduling

How do we decide which packet to transmit over a link at any given time slot?

Why does it matter? Cannot we just use FCFS?

Nearest to Origin (NTO) policy [Gamarnik, 1998]

Extended Nearest to Origin policy (ENTO): When multiple packets contend for
an edge, schedule the one which has traversed the least number of edges

Extension of NTO to general flow problems

Theorem 7: Stability of the Physical Queues

The overall UMW policy is throughput-optimal.

Proof uses the previous almost sure arrival bound on a typical sample path with
an inductive argument on the edges.
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Throughput-Optimal Broadcast Policy

ENTO: Example

S1

S2

e1 e2 e3

e4

e5

p2p1

Qe3

priority[p1]e3 = −2

priority[p2]e3 = −1

p1

p2

Packet p1 has higher priority than p2 to cross e3 as it has traversed less number of edges
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Throughput-Optimal Broadcast Policy

Proof Ideas for Theorem 7: Stability of the Physical Queues

1 Observation: Since routes are fixed at source, total number of arrival Ãe(t1, t2) in
interval [t1, t2] at virtual queue Q̃i = Ai (t1, t2) total number of packets that wish
to be trabsmitted by the node i in the physical network sometime in future.

2 Theorem 6 (Stability of the Virtual Queues) + Skorokhod Map representation +
Almost Sure Bound =⇒

Ai (t0, t) ≤ Si (t0, t) +O(log(t)), ∀i ∈ V , t0 ≤ t, w.p. 1

This essentially implies that none of the nodes are overloaded under the UMW
scheduling policy

3 With the universal stability property of the ENTO packet scheduling policy it is
finally shown that the physical queues are rate stable.

Involves induction on the number of hops from the source.
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Numerical Results

Broadcasting: Network without Interference
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A wireless network with non-interfering channels. The broadcast capacity of the network is λ∗ = 2.
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Numerical Results

Broadcasting Simulation: Time-Varying Wireless Network
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Plot of the broadcast delay incurred by the
UMW policy as a function of the arrival rate
λ in the 3× 3 wireless grid network.
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Conclusion

Conclusion

Our understanding of network control theory has progressed enormously over the
past 25 years, starting with the seminal Backpressure policy of Tassiulas and
Ephremides (1992).

We have derived a throughput-optimal algorithm, UMW, for broadcasting in
wireless networks with point-to-multipoint links.

This important problem was proposed by Massoulie and Twigg, and has remained
open for last ten years.

The virtual network framework used to solve the problem is surprisingly general
and may be applied to other open problems in this area (e.g., Sinha, Modiano,
INFOCOM ’17).

Opens up exciting new directions for research with lots of interesting problems.
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