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Mid-Term Exam.

• The mid-term paper will be due on October 28, 2020 in the class.
• Each problem carries 10 points.
• No collaboration among the students allowed. Any two or more identical or nearly-identical
solutions will automatically receive zero points each.

1. (Gaussian Complexity of `0-“balls”) Sparsity plays an important role in many
classes of high-dimensional statistical models. In this problem, we will compute the
Gaussian complexity of an s-sparse `0-ball intersected with a unit `2-ball. Consider
the set

T d(s) = {θ ∈ Rd : ||θ0|| ≤ s, ||θ||2 ≤ 1.}

corresponding to all s-sparse vectors contained within the Euclidean unit ball. Recall
that the Gaussian Complexity of a set V ⊂ Rd is defined as

G(V ) = E
[

max
v∈V

vTw
]
,

where wi ∼i.i.d. N (0, 1), ∀i
In this problem, we prove that the Gaussian complexity of T d(s) is upper bounded as

G(T d(s)) ≤
√
s+

√
2s ln

(
ed

s

)
. (1)

(a) First show that G(T d(s)) ≤ E
[

max|S|=s ||wS||2
]
, where wS ∈ R|S| denotes the sub-

vector of (w1, w2, . . . , wd) indexed by the subset S ⊆ {1, 2, . . . , d}.
(b) Next show that for any fixed subset S of cardinality s:

P
[
||wS||2 ≥

√
s+ δ

]
≤ e−δ

2/2.

(c) Use the preceding parts to establish the bound (1).

2. (Hedge with Many Good Experts) Consider running the Hedge algorithm (with
learning rate η > 0) in the standard expert’s setting as discussed in the class. Show
that for all T ≥ 1 and any L > 0,

L̂Hedge
T ≤ L+

1

η
ln

N

NL

+ ηT,

where NL = |1 ≤ i ≤ N : Li,T ≤ L|.
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3. (Arbitrarily Small Training Error) Let Z = {(xi, f(xi)), 1 ≤ i ≤ N} be a set of
N training samples, where X = {xi, 1 ≤ i ≤ N} is the set of N corresponding feature
vectors and f : X → {±1} is some unknown target function. Suppose that we have a
hypothesis class H ⊆ {h : X → {±1}}, such that for any distribution µ on X , there
exists an h ∈ H, such that the classification error (w.r.t. µ) is at most 1

2
− γ, for some

γ > 0, i.e.,

Px∼µ(h(x) 6= f(x)) ≤ 1

2
− γ.

Let WMn(H) be the class of weighted majority vote functions consisting of n hypotheses,
i.e.,

WMn(H) = {w(x) = sign(
n∑
i=1

αihi(x)).

where x ∈ X , hi ∈ H, αi ≥ 0,
∑

i αi = 1. Prove that there exists a hypothesis in the
class WMT (H) with T = O( 1

γ2
log(1

ε
)), which misclassifies at most an ε fraction of the

training set Z.

Hint: Recall the reduction of Boosting to Online Learning as discussed in the class.
Use Hedge as your particular online learning algorithm. Result from Problem 2 could
be useful.

4. (Group Testing Lower Bounds) In the ongoing COVID-19 pandemic, when the
testing kits are short in supply, Group Testing is an effective method to carry out a
large number of tests with a limited number of kits. Check out the following expository
article to understand how Group Testing is being carried out in India and other parts
of the world: https://www.nature.com/articles/d41586-020-02053-6.
The above article describes four possible methods of detecting COVID-19 via Group
Testing. In this problem, we investigate the fundamental limits of all such testing
procedures.
Formally, our goal is to figure out which of the k locations in an n-dimensional binary
vector b are non-zero (say, equal to 1). One can query some subset of the dimensions,
i.e., a query vector φ is binary with 1’s in the dimensions you want to query. The
outcome of the query is binary and equals ∨iφibi, which is 1 iff at least one of the
queried dimensions is 1 in the noiseless case and flipped independently with probability
q ≤ 0.5 in the noisy case. We say that an error occurs when the inferred locations of
1’s differ in at least one coordinate from the original locations of 1’s in the vector b.
Show that1,

(a) in the noiseless case, any group testing algorithm requires at least (1−ε)k log(n/k)−
1 queries to have probability of error at most ε.

(b) in the noisy case with noise probability q ∈ [0, 1/2), any group testing algorithm

requires at least (1−ε)k log(n/k)−1
1−h(q) queries to have probability of error at most ε, where

h(q) is the usual binary entropy function.

1The base of all logarithms in this problem is 2.


