Mid Term

- This mid-term is due on April 5, 2021.
- Each problem carries 10 points.
- No collaboration is allowed for mid-term!
	- 1. (Infinite Integrals) In the following, let $f : [0,1] \to \mathbb{R}$ be continuous. Rigorously evaluate the following limits.

(1)
$$
\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 f\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) dx_1 dx_2 \dots dx_n
$$

\n(2)
$$
\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 f\left((x_1 x_2 \dots x_n)^{1/n}\right) dx_1 dx_2 \dots dx_n.
$$

(3)
$$
\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 \frac{x_1^2 + x_2^2 + \dots + x_n^2}{x_1 + x_2 + \dots + x_n} dx_1 dx_2 \dots dx_n
$$

2. (Superharmonic functions) A function $\phi : \mathbb{Z}^k \to \mathbb{R}$ on the integer lattice \mathbb{Z}^k is called *superharmonic* if for each lattice point x , we have

$$
\phi(\boldsymbol{x}) \geq \frac{1}{2k} \sum_{\boldsymbol{y}:||\boldsymbol{y}-\boldsymbol{x}||_1=1} \phi(\boldsymbol{y}),
$$

where the sum extends over the $2k$ nearest neighbors. Using Martingale methods, show for $k = 1$ and $k = 2$ that all bounded superharmonic functions are constant.

HINT: You may use the fact that the symmetric random walk on \mathbb{Z}^k is recurrent for $k = 1, 2.$

- 3. (Find the odd one out) Assume that you have m coins. All the coins are unbiased (that is, they have an equal probability of heads or tails), EXCEPT the special coin which comes up heads with probability $\frac{1}{2} + \rho$ for some unknown $0 < \rho < \frac{1}{2}$. Your goal is to identify the special coin. For this, you toss each of the coins n times and record the results of each toss. Come up with a decision rule to infer the special coin from the experimental results. Find the sample complexity $(i.e., a lower bound to n)$ of your decision rule to ensure that the probability of error is at most δ .
- 4. (Gaussian Complexity of ℓ_0 -"balls") Sparsity plays an important role in many high-dimensional statistical models. The Gaussian complexity of an Euclidean set $S \subseteq \mathbb{R}^d$ is defined as:

$$
\mathcal{G}(S) = \mathbb{E}(\max_{\boldsymbol{x} \in S} \sum_{i=1}^{d} x_i Z_i),
$$

where $\{Z_i, 1 \leq i \leq d\}$ are i.i.d. standard Gaussian random variables. In this problem, we will compute the Gaussian complexity of an s -sparse ℓ_0 -ball intersected with a unit $\ell_2\text{-ball.}$ Consider the set

$$
T^d(s) = \{ \theta \in \mathbb{R}^d |||\theta||_0 \le s, ||\theta||_2 \le 1. \}
$$

corresponding to all s-sparse vectors contained within the Euclidean unit ball. In this problem, we prove that its Gaussian complexity is upper bounded as:

$$
\mathcal{G}(T^d(s)) \precsim \sqrt{s \log\left(\frac{ed}{s}\right)}.\tag{1}
$$

- (a) First show that $\mathcal{G}(T^d(s)) = \mathbb{E} \left[\max_{|S|=s} ||w_S||_2 \right]$, where $w_S \in \mathbb{R}^{|S|}$ denotes the sub-vector of (w_1, w_2, \ldots, w_d) indexed by the subset $S \subseteq \{1, 2, \ldots, d\}$.
- (b) Next show that for any fixed subset S of cardinality s :

$$
\mathbb{P}\big[||w_S||_2 \ge \sqrt{s} + \delta\big] \le e^{-\delta^2/2}.
$$

(c) Use the preceding parts to establish the bound (1).