Mid-Term

- Each problem carries 10 points.
- To get any credit, **rigorously justify** all of your claims.
- Collaboration is **strictly prohibited**.
 - 1. (Independence of Normal Random Variables) Let X and Z be independent, with $X \sim N(0, 1)$, and with $\mathbb{P}(Z = 1) = \mathbb{P}(Z = -1) = \frac{1}{2}$. Define Y := XZ (*i.e.*, Y is the product of X and Z).
 - (a) Prove that $Y \sim N(0, 1)$.
 - (b) Prove that X and Y are *not* independent.
 - (c) Prove that Cov(X, Y) = 0.
 - (d) It is sometimes claimed that if X and Y are normally distributed random variables with Cov(X, Y) = 0, then X and Y must be independent. Is this claim correct? If not, what should be the correct statement?
 - 2. (A Stochastic Recursion) Let D_1 and X be independent and square-integrable random variables such that $\mathbb{E}(X) = \mu$ and $\operatorname{Var}(X) = \sigma^2 > 0$. Define the random variable D_2 as

$$D_2 = \max(0, D_1 + X).$$

(a) Show that if $-\infty < \mu < 0$ and D_1 and D_2 are identically distributed then

$$d = \mathbb{E}(D_1) = \mathbb{E}(D_2) \le \frac{\sigma^2}{2|\mu|}$$

(b) Show that if on the contrary $\mathbb{E}(X) = \mu > 0$ and $\mathbb{E}D_1 \ge 0$, then $\mathbb{E}(D_2) \ge \mathbb{E}(D_1) + \mu$.

Hint: You may use the fact that $(\max(a, b))^2 \leq a^2 + b^2$, $\forall a, b$.

3. (Convergence of Random Variables) Let $(X_n, n \ge 1)$ be a sequence of i.i.d. random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{P}(X_n = 2) = \mathbb{P}(X_n = 0) = \frac{1}{2}$ for every $n \ge 1$. Let also $(Y_n, n \ge 1)$ be the sequence of random variables defined as

$$Y_n = \sum_{j=1}^n \frac{X_j}{3^j}, \ n \ge 1.$$

- (a) Show that there is a random variable Y such that $Y_n \to Y$ almost surely.
- (b) Is it true that $Y_n \xrightarrow{\text{m.s.}} Y$? Justify your answer.
- (c) Run a numerical simulation and plot the empirical distribution of Y_n for large enough n.