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Abstract

We consider the problem of impromptu deployment of a multihop wireless network as a deployment operative steps

along a random lattice path, with a Markov evolution. At each step, with various probabilities, the path can either

continue in the same direction or can take a turn “North” or “East,” or can come to an end, at which point a sensor

needs to be placed to send some measurements to a base station near the origin of the path. A decision has to be

made at each step whether or not to place a wireless relay node. The problem is motivated by the growing need

for emergency first-responders (such as fire-fighters) to deploy sensors for situational awareness (e.g., temperature

sensors on fire-doors). Assuming that the measurement traffic generated by the sensor is very low, and simple

link-by-link scheduling, we consider the problem of relay placement so as to minimize an end-to-end cost metric,

a linear combination of the sum of convex hop costs, and the number of relays placed. In one version, radio

propagation is possible only along the straight line segments in the path. In another version, propagation is allowed

between any pair of points on the path. In each case, the impromptu relay placement problem is formulated as a

total cost Markov decision process. We provide results on the structure of the optimal sequential placement policies,

and show how the structure changes with variation of some parameters of the model. We compare the performance

of the optimal policy with that of the heuristic of placing a relay when the distance from the previously placed relay

exceeds a certain threshold.

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.0.1 Related Literature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 System Model and Problem Formulation 5
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Deployment Policy π and Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Conditions on d(·): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The Line-Of-Sight (LOS) Case 11
3.1 MDP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Solving the Relaxed Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Optimal Value and Bellman Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Optimal Stopping Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Computation of the Optimal Threshold r∗
λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 A bound on gλ (r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 An Efficient Fixed Point Iteration Algorithm Using the OSLA rule . . . . . . . . . . . . . . . . . 21
3.5 Solving the Constrained MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 The Non-Line-Of-Sight Case 28
4.1 State Space, Actions, and Transition Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Solving the Relaxed Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Optimal Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Optimal Stopping Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Calculating the Optimal Cost-To-Go after Placement . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 An Upper-Bound gλ for the Optimal Cost-to-Go Jλ (0,0) . . . . . . . . . . . . . . . . . . . . . . 41
4.6 An Efficient Fixed Point Iteration Algorithm for Obtaining the Optimal Policy . . . . . . . . . . . 41
4.7 Solving the Constrained MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Numerical Results 48
5.1 Comparison Between a Simple and the Optimal Policy . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 The Simple Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion and Future Work 58

Bibliography 58

iii



List of Figures

1.1 An emergency response team being supported by an impromptu wireless sensor network. . . . . . 1
1.2 A wireless network being deployed as a person steps along a random lattice path. Inverted V:

location of the deployment person; solid line: path already covered; circles: deployed relays; thick
dashed path: the remaining path. The sensor to be placed at the end is also shown . . . . . . . . . 2

1.3 Problem studied in [13]. Impromptu placement of wireless relays along a corridor at the end of
which a sensor needs to be placed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 A depiction of relay deployment along a random lattice path with LOS (left) and NLOS (right)
propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Mathematical abstraction of relay deployment along a random lattice path with radio-opaque walls. 6
2.2 Mathematical abstraction of relay deployment along a corridor with radio-transparent walls . . . . 7

5.1 Variation of Optimal Cost-to-go with ’Relay Price’ λ . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Variation of Expected Cost and Expected Number of Relay nodes used with Relay Price λ . . . . 50
5.3 Symmetric Variation of Cost-to-go about q = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Complement of the Placement Set and Various Components of the Boundary (p = 0.002,q =

1/2,η = 3,ρ = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Variation of Placement boundary with path-loss-exponent η . . . . . . . . . . . . . . . . . . . . 52
5.6 Comparison between the Optimal and Heuristic placement policies (p = 0.002,q = 0.5,ρ = 10) . 53
5.7 Comparison of Avg Power costs vs ρ curves for three different cases (p = 0.002,q = 0.5,η = 2) . 53
5.8 Boundary Comparison for p = 0.02,η = 2 and (a) q = 0.5,ρ = 4.7. (b) q = 0.3,ρ = 2.8. (c)

q = 0.1,ρ = 4.0. The red diamonds denote boundary points in Optimal Policy and blue circles
denote boundary points in Heuristic Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.9 Boundary Comparison for the parameters p = 0.2,η = 2 and (a) q = 0.5,ρ = 0.07. (b) q = 0.3,ρ =
0.045. (c) q = 0.1,ρ = 0.11. The red diamonds denote boundary points in Optimal Policy and blue
circles denote boundary points in Heuristic Policy . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.10 Comparison of Power-Cost between the Optimal and the Simple Placement policies for p = 0.02
and (a) q = 0.5 (b) q = 0.3 (c) q = 0.1 (d)Comparison of Cost-to-go between the Optimal and three
other constant-distance policies for the relaxed problem with λ = 10, p = 0.02,q = 0.5. . . . . . 56

5.11 Comparison of Cost-to-go between the Optimal and the Heuristic Placement policies for p = 0.2
and (a) q = 0.5 (b) q = 0.3 (c) q = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

iv



Chapter 1

Introduction

The operation of an emergency response team (in situations such as a fire or a terrorist siege) could be facilitated by

a wireless sensor network that is deployed as the team moves through the region of operation. Such a network could

provide situational awareness, since the team members will not themselves be able to observe all parts of the region

of operation. If the layout of the region of operation is not known, then such a network cannot be planned, but must

be deployed in an “as-you-go” or impromptu fashion. In this thesis we are concerned with the rigorous formulation

and solution of a simple version of the problem of optimal sequential deployment of a multihop wireless relay

network along a random lattice path, as shown in Fig. 1.2. The random lattice path could model a corridor in a large

building, or even a trail in a dense forest. networks as impromptu wireless networks.

Figure 1.1: An emergency response team being supported by an impromptu wireless sensor network.

1.0.1 Related Literature:

While the concept of an impromptu wireless network for first-responders has been around at least since 2001, the

literature comprises mainly system architectures, ad hoc algorithms, and deployment experiences.

Aache et al. [1] provide an overview of the on-going European Project called Wireless DEployable Network

1



2

V

(0,0)

Figure 1.2: A wireless network being deployed as a person steps along a random lattice path. Inverted V: location of
the deployment person; solid line: path already covered; circles: deployed relays; thick dashed path: the remaining
path. The sensor to be placed at the end is also shown

System (WIDENS) which aims at defining a rapidly deployable communication system for public safety or

emergency services. The WIDENS project provides an open platform for the validation of adhoc technologies

for public safety applications. Portmann et al. [17] describe wireless mesh networks technology and different

applications of wireless mesh networks in public safety and disaster situations. This thesis also lists performance

requirements of public safety communication systems in the following areas: availability, reliability, survivability,

restorability, quality of service and support for prioritization of traffic. To counter the limitation of communicating

via a base-station in emergency scenarios, the paper by Gao et al. [9] propose an architecture for an emergency

response system relying on a self-configuring wireless mesh network for public safety. The proposed design however

requires a control centre which should be installed in the vicinity of the monitoring region and must maintain the

connection with all the nodes in the monitoring region. Naudts et al. [15] describe the concept and implementation

of a monitoring and planning tool that helps an emergency team in deploying the network and also in providing a

real time overview of the status of the network. The authors use the packet pair probing technique for the estimation

of the link capacity. Aurisch et al. [3] describe a RSS based relay deployment approach. The emergency responder

determines the RSS by radiotap header analysis of the last N beacons. This is compared with a threshold value to

determine the quality of a link. These measured values are sent to a command centre which generates a picture of

the current communication system status.

To the best of our knowledge, Mondal et al. [13] took the first steps towards rigorously formulating and

addressing the problem of optimal deployment of impromptu wireless sensor networks in a simple setting. They

called the problem optimal sequential relay placement (OSRP), and formulated and solved OSRP for the problem

on a line (a model for a building “corridor”) of unknown length. In the problem formulated by Mondal et al. [13],

as the deployment operative walks along the corridor, at each step the decision to place or not to place a wireless

relay has to be made. The corridor is of unknown length but prior information is available about its probability

distribution; at each step, the corridor can come to an end with probability p, at which point a sensor has to be placed.

Once placed, the sensor sends periodic measurement packets to a base station (BS) (e.g., a situation monitoring

truck), which is outside the building, x steps from the entry to the corridor. It is assumed that the measurement rate
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at the sensor is low, so that (with a very high probability) a packet is delivered to the BS before the next packet is

generated at the sensor. We call this the “lone packet model”, which is realistic for situations in which the sensor

must send a packet every few seconds [20]. The objective of the sequential decision problem is to minimise a certain

expected per packet cost (e.g., end-to-end delay or total energy expended by a node), which can be expressed as

the sum of the costs over each hop. In practice, the number of relays that can be deployed will be constrained by

the ability of the deployment personnel to carry the relays in an emergency situation. Two types of constraints are

considered in [13]: expected number of relays constraint, and absolute number of relays constraint. In each case,

the problem is formulated as a total cost Markov decision process, and, under the assumption that the per-hop cost

function is nonnegative, increasing, convex, and has unbounded derivative, the structures of the optimal policies are

characterized.

Figure 1.3: Problem studied in [13]. Impromptu placement of wireless relays along a corridor at the end of which a
sensor needs to be placed.

Our Contributions: In this thesis, while continuing to assume (a) that a single operative moves step-by-step

along a line, deciding to place or to not place a relay, (b) that the length of the line is a geometrically distributed

random multiple of the step size, (c) that one sensor is placed at the end of the line, (d) that the lone packet traffic

model applies, and (d) that the total cost of a deployment is a linear combination of the sum of convex hop costs and

the number of nodes placed, we extend the work presented in [13] in two directions:

(i) At each step, the line can take a right angle turn either to the “East” or to the “North” with known fixed

probabilites. With the building context in mind, we will sometimes call the path a “corridor,” and each straight-line

segment (between turns) a “gallery.”

(ii) The region through which the line traverses is either radio opaque (i.e., only line-of-site (LOS) radio

propagation takes place along the straight line segments), or non-line-of-sight (NLOS) propagation is possible,

hence a radio link exists between two nodes placed anywhere on the path; see Fig. 1.4.

For these situations, in this thesis, we provide the following main results:

1. For the LOS case, in Theorem 3.2.2, we establish that the problem can be viewed as a sequence of problems

each of which is identical to the one solved in [13]. Further, in Theorem 3.2.6, we show that the one-step-look-ahead

(OSLA) rule applies. In Section 3.3 we use the OSLA rule to provide a method for computing the placement
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Figure 1.4: A depiction of relay deployment along a random lattice path with LOS (left) and NLOS (right)
propagation.

threshold. We have developed an efficient fixed-point-iteration algorithm in section 3.4.2 utilizing the OSLA rule

to compute the threshold in an iterative way. We also provide results on the correctness and finite termination

properties of our algorithm in that section.

2. For the NLOS case, in Theorem 4.2.2, we show that optimal policy is of the form of a boundary (with respect

to the previously placed relay), on crossing which a relay must be placed. In Theorem 4.3.4, we establish that the

placement boundary can be characterized via the OSLA rule. Here also, in section 4.6.1, we propose an efficient

fixed-point-iteration-algorithm for computing the optimal policy in an iterative way. We also prove its correctness

and finite termination properties.

3. In Section 5 we provide several numerical results that illustrate the theoretical development. The relay

placement approach proposed in [15, 18, 19, 3], when applied to isotropic propagation as assumed in our thesis,

would suggest a distance threshold based placement rule. We numerically obtain the optimal rule in this class, and

find that the cost of this policy is numerically indistinguishable from that of the overall optimal policy provided by

our theoretical development, thus suggesting that it might suffice to utilize a distance threshold policy. The distance

threshold, however, depends on the hop cost function and the parameters of the problem.



Chapter 2

System Model and Problem Formulation

2.1 System Model

Let Z+ denote the set of nonnegative integers, and Z2
+ the nonnegative orthant of the two dimensional integer lattice.

We will refer to the x direction as East and the y direction as North. The control centre is located at the origin (0,0).

Starting from (0,0) there is a random lattice path that progresses initially Eastward, and takes random turns to the

North or to the East (this is to avoid the path to fold back onto itself, see Fig 1.4). Under this restriction, the path

evolves as a stochastic process over Z2
+; a characterization of the stochastic evolution is known to the deployment

person (and will be described later in this section).

We assume that the stride length of the deployment person is 1 unit which is the edge length in the lattice. Thus

the deployment person starts from (0,0) and moves along the vertices of the path, placing relay nodes at some

vertices and finally at the end of the path places a sensor (e.g., a video camera or a temperature sensor). Once placed,

the sensor periodically generates measurement packets which are forwarded by the successive relays in a multihop

fashion to the control centre.

For two successive relays separated by a distance r, we assign a cost of d(r) which could be the average delay

incurred over that hop (including transmission overheads and retransmission delays), or the power required to get a

packet across the hop. For instance, in our numerical work we use the power cost, d(r) = Pm + γrη , where Pm is the

minimum power required, γ represents an SNR constraint and η is the path loss exponent. Now suppose N relays

are placed such that the successive inter-relay distances are r0,r1, · · · ,rN (r0 is the distance from the control centre

at (0,0) and the first relay, and rN is the distance from the last relay to the sensor placed at the end of the path)

then the total cost of this placement is the sum of the one-hop costs C = ∑
N
i=0 d(ri) (the total cost being the sum of

one-hop costs can be justified for the lone packet model since when a packet is being forwarded there is no other

packet transmission taking place). Our objective is to obtain placement policies π to minimize a linear combination

of the average total cost EπC (expectation is with respect to the random evolution of the corridor) and the number of

relays, Eπ N, used during the entire operation. Next we will describe the two different propagation models namely,

5



2.1 System Model 6

the line-of-sight (LOS) and the non-line-of-sight (NLOS) models, along with the associated stochastic models for

the path evolution. The optimal relay placement strategies for these two models are studied in detail in Sections 3

and 4, respectively.

Figure 2.1: Mathematical abstraction of relay deployment along a random lattice path with radio-opaque walls.

1) Line-of-Sight (LOS) propagation: In this model a packet exchange can take place between two sucessive

relays only if they are placed on the same straight line segment of the lattice path (e.g., within the same gallery of

a building corridor). Thus, to establish communication, as shown in Fig. 1.4, a relay has to be invariably placed

at all vertices where the path takes a turn. This model is best suited for deployment within a building where the

walls are radio opaque. The stochastic path evolution model is as follows. From a vertex that the path has reached

(without having terminated), the path will end at the next step with probability p. If the path does not terminate

(with probability 1− p), independently, at this point there is a turn with probability q, or there is no turn with

probability (1−q). Thus the probability that the path will continue with and without taking turns are q(1− p) and

(1−q)(1− p), respectively. It is assumed that the person deploying the relays knows the number of steps that he

has taken along the path since last placing a relay.

2) Non-Line-of-Sight (NLOS) Propagation: In this case, packet exchange can take place between any two

successive relays even if they are not on the same straight line segment. In the building context this would

correspond to the walls being radio transparent. The model is suitable when the deployment region is a thickly

wooded forest where the deployment person is restricted to move only along some narrow path (lattice edges in our

model). When the deployment person has reached some vertex, the path continues for one more step and terminates

with probability p, or continues with probability 1− p. In either case, the next step is Eastward with probability q

and Northward with probability (1−q). In this version, the person deploying the relays is assumed to know the

number of steps taken in the x direction and in y direction.

In our present work, the path loss model is assumed to be the same along all permitted links in the two versions.

This does not conform well to the building setting, where propagation along corridors would have a different path

loss model as compared to that through the walls, but would be applicable to an impromptu deployment as one
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Figure 2.2: Mathematical abstraction of relay deployment along a corridor with radio-transparent walls

walks along a lattice in densely wooded area.

2.2 Deployment Policy π and Problem Formulation

A deployment policy π is a sequence of mappings µk : k ≥ 0, where at the k-th vertex (also referred to as the k-th

step) of the path (provided that the path has not ended thus far) µk allows the deployment person to decide whether

to place or not to place a relay where, in general, randomization over these two actions is allowed. The decision is

based on the entire information available to the deployment person at the k-th step, namely the set of vertices traced

by the path and the location of the previous vertices where relays were placed. Let Π represent the set of all policies.

For a given policy π ∈Π, let Eπ represent the expectation operator conditioned under using policy π . Let C denote

the total cost incurred and N the total number of relays used. We are interested in solving the following problem,

min
π∈Π

EπC+λEπ N (2.1)

where λ > 0 may be interpreted as relay cost. Solving the problem in (2.1) can also help us solve the following

constrained problem,

min
π∈Π

EπC

Subject to: Eπ N ≤ ρavg (2.2)

where ρavg > 0 is a contraint on the average number of relays, by utilizing the following standard result:

Lemma 2.2.1. Let π∗
λ
∈Π be an optimal policy for the unconstrained problem (2.1) such that Eπ∗

λ
N = ρavg. Then
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π∗
λ

is also optimal for the constrained problem (2.2).

Proof. By the hypothesis about π∗
λ

, we have for all π ∈Π

Eπ∗
λ
C+λEπ∗

λ
N ≤ EπC+λEπ N

=⇒ Eπ∗
λ
C ≤ EπC+λ (Eπ N−ρavg)

But we have for all admissible π , Eπ N ≤ ρavg. Hence we conclude that,

Eπ∗
λ
C ≤ EπC ∀π ∈Π (2.3)

Hence it follows that π∗
λ

is optimal for the constrained problem (2.2) as well. �

The specific details about the connection of the constrained problem to the “relaxed” problem is deferred to the

subsequent chapters in their particular context. In Sections 3 and 4 (corresponding to LOS and NLOS propagation

models, respectively) we focus on solving the problem in (2.1). We end this section by imposing few technical

conditions on the one-hop cost function d(·).

2.2.1 Conditions on d(·):

d(·) satisfies the following conditions, (C1) d(0)> 0, (C2) d(r) is convex and increasing in r, and (C3) for any r

and δ > 0 the difference, d(r+δ )−d(r) increases to ∞.

(C1) is imposed considering the fact that it requires a non-zero amount of delay or power for transmitting a

packet between two nodes, however close they may be. (C2) is a natural property of any cost function in general

and (C3) is required in some of our proofs. These conditions are satisfied for the power cost, Pm + γrη , used in our

numerical work, and in general by any reasonable cost function.

In the NLOS case, we will denote the one-hop cost between the locations (0,0) and (x,y) ∈ℜ2 as d(x,y). We

allow a general cost-function d(x,y) endowed with the following properties, (C4) The function d(x,y) is positive,

twice continuously partially differentiable in variables x and y and

dxx(x,y)> 0, dxy(x,y)> 0, dyy(x,y)> 0 ∀x,y ∈ R+ (2.4)

Finally define, for (m,n) ∈ Z2
+, ∆1(m,n) = d(m+1,n)−d(m,n) and ∆2(m,n) = d(m,n+1)−d(m,n), where

both m and n are measured in units of δ . We now prove the following lemma.

Lemma 2.2.2. ∆1(m,n) and ∆2(m,n) are non-decreasing in both the coordinates m and n.

Proof. It is easier to prove the lemma allowing the arguments m and n take values from the real line. We have,

∆1(x,y) = d(x+δ ,y)−d(x,y)
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Partially differentiating both sides w.r.t. x, we get

∂∆1(x,y)
∂x

= dx(x+δ ,y)−dx(x,y) (2.5)

= δdxx(ζ ,y) x < ζ < x+δ (2.6)

> 0 (2.7)

Where the equality in Eqn 2.6 follows from the application of Lagrange’s Mean Value Theorem to the function

dx(.,y) and the inequality in 2.7 follows from assumption 2.4.

The above proves the fact that ∆1(x,y) is non-decreasing in x. To prove that ∆1(x,y) is non-decreasing in y, we

partially differentiate ∆1(x,y) w.r.t. y and obtain

∂∆1(x,y)
∂y

= dy(x+δ ,y)−dy(x,y) (2.8)

= δdxy(η ,y) x < η < x+δ (2.9)

> 0 (2.10)

Where the equality in Eqn 2.9 follows from the application of Lagrange’s Mean Value Theorem to the function

dy(.,y) and the inequality in 2.10 follows from assumption 2.4.

This shows that the function ∆1(x,y) is non-decreasing in both the coordinates x and y. In a similar way it can also

be shown that ∆2(x,y) is non-decreasing in x and y under the assumption 2.4. This completes the proof. �

Now we consider a special case for the above cost-function d(x,y) where the function depends only on the 2-

norm of its arguments. This cost-function is realistic for deployment in a forest environment, where the cost-function

is isotropic.

Lemma 2.2.3. d(x,y) is convex in (x,y), where (x,y) ∈ R2

Proof. To show this, we use the composition rule. Define the function g(x,y) =
√

x2 + y2 which is nothing but the

2-norm of the vector (x,y)T .Let us denote this vector by rrr.

Then we have, via triangle inequality of the 2-norm, for 0≤ λ ≤ 1,

|λ rrr1 +(1−λ )rrr2|2 ≤ λ |rrr1|2 +(1−λ )|rrr2|2 (2.11)

This shows that the function g(x,y)≡
√

x2 + y2 is convex in (x,y). Also the delay function d(.) is assumed to be

convex and non-decreasing in its argument. Hence by using the composition rule 3.10 of ([6]), we conclude that the

function d(x,y)≡ d(
√

x2 + y2) is convex in (x,y) ∈ R2. �

Now we make the following assumption on the function d(x,y).
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• d(x,y) is a convex increasing function of (x2 + y2), i.e., d(x,y) may be written as

d(x,y) = h(x2 + y2) (2.12)

Where h(x) is convex and increasing in x.

This assumption may be justified for the most common delay function as considered in [13]. From Chapter 3 of

[13], we observe that using lone-packet model, the average packet transmission delay between the transmitter and

receiver separated by a distance r is given by dη ,u(r) = T
(1−e−βur−η

)l , where u captures the contribution of fading, η

is the path-loss exponent, β and T and l are constants depending on the protocol used and on the fading distribution

and are independent of r.

It was shown in Lemma 3.1 of [13] that for η > 1, dη ,u(r) is strictly convex, strictly increasing in r. Moreover

dη ,u(r) its derivative w.r.t. r increases to infinity as r→ ∞.

For the above delay function, we have

dη ,u(r) =
T

(1− e−βur2(− η

2 ))l
(2.13)

= d η

2 ,u
(r2) (2.14)

Hence by the same argument as in [13], we conclude that for η

2 > 1, i.e., η > 2, dη ,u(r) is a convex increasing

function of r2, and dη ,u(r) and its derivative w.r.t r2 goes to infinity as r→ ∞. Averaging over the distribution of

U , we obtain that d(r)≡ Eudη ,u(r) is convex and increasing in r2 with its first derivative going to ∞ as r→ ∞ for

η > 2.

The assumption may be also justified similarly for the most common one-hop power function as considered in [14].

There we have one-hop power function Pη(r) = Pm + γrη , where Pm,γ,η are constants. Similar conclusion may be

drawn for Pη(r2) by noting that

Pη(r) = Pη

2
(r2) (2.15)

It is easy to check that the conditions (C1), (C2), (C3) and (C4) are satisfied for this function.



Chapter 3

The Line-Of-Sight (LOS) Case

Recall that in the LOS case, we are forced to place a relay at each turn in the random lattice path. In this section, we

show that, due to this feature, the problem can be decomposed into a random number of problems each being that

of deploying relays on a straight line path without turns. The problem on a straight line can be formulated as an

optimal stopping problem whose solution is a threshold policy. The problem on a straight line was considered by

Mondal et al. [13]. We show that the policy obtained therein can be viewed as a one-step-look-ahead (OSLA) rule.

3.1 MDP Formulation

We formulate the problem as a Markov Decision Process (MDP). The decision of placing or not placing a relay

is taken at each step k ∈ Z+ of the path (with k = 0 corresponding to (0,0)). We consider the random process

Sk = (Xk,Zk), where Xk is the number of steps between location k and the last node (relay or control centre), and

Zk ∈ {e, t,c}. Zk = e means that at step k the random lattice path has ended, Zk = t means that the path takes a turn,

and Zk = c means that the path will continue in the same direction for at least one more step. The state-space is thus

given by:

S = {(x,z) : x ∈ Z+,z ∈ {e, t,c}}∪{φ} (3.1)

where {φ} denotes the cost-free terminal state, i.e., the state after the end of the path has been discovered. The

action taken at step k is denoted Uk ∈ {0,1}, where Uk = 1 is the action to place a relay, and Uk = 0 is the action of

not placing a relay. The permissible action sets are as follows

• A(x,z) = {0,1} for z = c

• A(x,z) = {1} for z = {t,e}

11
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Finally, by the sequence Uk ∈ Ak,k ≥ 0, we denote the sequence of actions. Given that (Xk,Zk) = (x,z), and if the

action Uk is taken, we now write down the state transition probabilities.

• If uk is 0,

(x,c)−→ (x+1,c) w.p. (1− p)(1−q) (3.2)

(x,c)−→ (x+1, t) w.p. (1− p)q (3.3)

(x,c)−→ (x+1,e) w.p. p (3.4)

• If uk is 1,

(x,c)−→ (1,c) w.p. (1− p)(1−q) (3.5)

(x,c)−→ (1, t) w.p. (1− p)q (3.6)

(x,c)−→ (1,e) w.p. p (3.7)

• If Zk = t, we have only one allowable action, i.e., uk = 1. In this case the state-transitions are given as follows

(x, t) −→ (1,c) w.p. (1− p)(1−q) (3.8)

(x, t) −→ (1, t) w.p. (1− p)q (3.9)

(x, t) −→ (1,e) w.p. p (3.10)

• If Zk = e, the allowable action is uk = 1 and we enter a cost free terminal state φ .

(x,e)−→ {φ} w.p. 1 (3.11)

• If Sk = φ , we return to the same terminal state φ w.p. 1, irrespective of the control uk

{φ} −→ {φ} w.p. 1 (3.12)

Finally, if the state is φ , we remain in φ thereafter.

For s ∈S , the one step cost is given by:

c(s,u) =


d(x) if s = (x,e)

λ +d(x) if u = 1 and s = (x,c)

0 if u = 0 or s = φ .

(3.13)
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A policy π is a sequence of mappings {µk}k≥0, where µk maps a state Sk to the corresponding set of feasible actions.

For a given policy π , the expectation of the total cost ∑
∞
k=0 c(Sk,µk(Sk)) is equal to the objective of the problem in

(2.1)

3.2 Solving the Relaxed Problem

3.2.1 Optimal Value and Bellman Equation

We have a total cost infinite horizon MDP with countable state space, finite action sets and non-negative costs per

stage. Let Jλ (x,z) denote the optimal cost-to-go at state (x,z) and define v = (1− p)q the probability of a turn at the

next step without the lattice path ending. By [5, Prop. 1.1, Page 137] Jλ (·, ·) is a solution to Bellman’s equation. It

follows that

Jλ (x, t) = λ +d(x)+ vJλ (1, t)+ pd(1)+(1− p− v)Jλ (1,c) (3.14)

which may be understood as follows. When at state (x, t) a relay must be place, thus incurring a cost of λ +d(x).

The next state is (1, t) w.p. v, the cost-to-go from which is Jλ (1, t); (1,e) w.p. p, the cost-to-go from which is d(1);

(1,c) w.p. (1− p− v), the cost-to-go from which is Jλ (1,c).

When the state is (x,c), both actions are possible. Let cp(x) and cnp(x) be the average cost of placing and

not placing respectively, the expressions for which are given by cp(x) = λ +d(x)+ vJλ (1,t)+ pd(1)+(1− p−

v)Jλ (1,c) and cnp(x) = vJλ (x+1, t)+ pd(x+1)+(1− p− v)Jλ (x+1,c). Bellman’s equation then yields

Jλ (x,c) = min{cp(x),cnp(x)}. (3.15)

Define the optimal placement set Pλ as the set of all x such that in states of the form {x,c} the optimal action is

to place a relay. Using (3.14) to (3.15) and [5, Prop. 1.3, Page 143], the placement set can be written as

Pλ = {x ∈ Z+ : cp(x)≤ cnp(x)}

=
{

x ∈ Z+ : λ +(p+ v)d(1)+(1− p− v)Jλ (1,c)≤ d(x+1)−d(x)+(1− p− v)(Jλ (x+1,c)−d(x+1))
}
.(3.16)

Let us now consider the problem of placing relays along the straight line segment between two consecutive turns

in the lattice path. We will show that the solution to this problem is also optimal for the problem of placing relays

on the random lattice path with LOS propagation. Notice that the probability that such a line segment ends at the

next step is (p+ v). The state space for this subproblem is Sg = {(x,z) : x ∈ Z+,z ∈ {c,e}}∪{φ}. Let Gλ (x,z) be

the optimal cost-to-go for this subproblem when the state is (x,z). As before, we obtain Bellman’s equation and an



3.2 Solving the Relaxed Problem 14

optimal placement set P̂λ as

Gλ (x,c) = min
{

λ +d(x)+(p+ v)d(1)+(1− p− v)Gλ (1,c),(p+ v)d(x+1)+(1− p− v)Gλ (x+1,c)
}
,(3.17)

P̂λ =
{

x ∈ Z+ : λ +(p+ v)d(1)+(1− p− v)Gλ (1,c)≤ d(x+1)−d(x)+(1− p− v)(Gλ (x+1)−d(x+1))
}
.(3.18)

The following result asserts that optimal placement policies for the straight line segments in the lattice path (in

the LOS case) are threshold policies.

Lemma 3.2.1. There exists a threshold r∗
λ

such that P̂λ = {r∗
λ
,r∗

λ
+1, · · · ,∞}.

Proof. The proof was provided my Mondal et al. (see [13]) and is based on a monotonicity result that follows from

a value iteration argument. �

Theorem 3.2.2. Pλ = P̂λ

Proof. Combining Equations (3.15) and (3.14), we see that

Jλ (x,c) = min{ 1
1− v

λ +d(x)+
p+ v
1− v

d(1)+
1− p− v

1− v
Jλ (1),

v
1− v

λ +qd(x+1)+
v

1− v
(p+ v)d(1)+

v
1− v

(1− p− v)Jλ (1)+ pd(x+1)+(1− p− v)Jλ (x+1)} (3.19)

Now we define the function Q(x) by

Jλ (x,c) = Q(x)+C x ∈ Z+ (3.20)

where,

C =
v

1− v
λ +

v
1− v

(p+ v)d(1)+(1− p− v)
(

Jλ (1)
1− v

−Q(1)
)

(3.21)

And,

Jλ (1,c)−Q(1) =C (3.22)

The above two equations yield the following value for the constant C

C =
v

1− v

(
1− p− v

p+ v
Jλ (1)+d(1)+

λ

p+ v

)
(3.23)

Substituting Jλ (x,c) in terms of Q(x) in Eqn (3.19), we obtain

Q(x) = min{λ +d(x)+(p+ v)d(1)+(1− p− v)Q(1),(p+ v)d(x+1)+(1− p− v)Q(x+1)} (3.24)
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The above step follows by using Eqns (3.21) and (3.22) and simple algebraic manipulations. But we note that the

functional equations describing Gλ (x,c) (3.17) and Q(x) (3.24) are identical. In general, these Bellman Equations

will have infinitely many solutions for the undiscounted problem considered above. However, from Proposition

1.2 of [5], we know that the optimal cost-to-go is the minimal solution of the Bellman Equations, which is unique.

Hence, we conclude that Q(x) = Gλ (x,c),∀x ∈ Z+. This in turn implies that,

Jλ (x,c) = Gλ (x,c)+C (3.25)

With C given as above.

Now consider the set Pλ , which is given as follows

Pλ = {x ∈ Z+ : cp(x)≤ cnp(x)}

= {x ∈ Z+ : λ +(p+ v)d(1)+(1− p− v)Jλ (1)≤ d(x+1)−d(x)+(1− p− v)(Jλ (x+1)−d(x+1))}

Now we substitute Jλ (x,c) = Gλ (x,c)+C, ∀x ∈Pλ . This yields,

Pλ = {x ∈ Z+ : λ +(p+ v)d(1)+(1− p− v)Gλ (1,c)≤ d(x+1)−d(x)+(1− p− v)(Gλ (x+1,c)−d(x+1))}

= P̂λ (3.26)

Where the last equality follows from Eqn. (3.18). �

Proposition 3.2.3. Gλ (0) = (p+ v)d(1)+(1− p− v)Gλ (1)

Proof. Keeping in mind Eqn. (3.17), we need to prove that, at the state (0,c), it is optimal not to place a relay

and move on to the next step. Note that if it had been optimal to place at the state (0,c), at the next step, we

return to the same state, viz., (0,c). Now, because of the stationarity of the optimal policy, we would keep

placing the relays at the same point, and since “relay-cost” λ > 0 and d(0) > 0, the expected cost for this

policy is ∞. Hence it is optimal not to place a relay node at the state (0,c), and from equation (3.17), we have

Gλ (0) = (p+ v)d(1)+(1− p− v)Gλ (1). �

Proposition 3.2.4. For the case of the corridor with opaque walls, the optimal cost-to-go Jλ (x) is related to the

optimal cost-to-go for the single gallery problem, Gλ (x), as ∀x ∈ Z+

Jλ (x) = Gλ (x)+
v
p
(λ +Gλ (0)) (3.27)

Proof. In Theorem 3.2.2, we have shown that

Jλ (x) = Gλ (x)+C ∀x ∈ Z+ (3.28)
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with

C =
v

1− v

(
1− p− v

p+ v
Jλ (1)+d(1)+

λ

p+ v

)
(3.29)

From proposition (3.2.3), we have

Gλ (0) = (p+ v)d(1)+(1− p− v)Gλ (1)

i.e.,

Gλ (0)
p+ v

= d(1)+
(1− p− v)Gλ (1)

p+ v
(3.30)

Now we refer to Eqn.(3.29) and substitute Jλ (1) = Gλ (1)+C. This yields,

C =
v

1− v
(

1− p− v
p+ v

Gλ (1)+d(1)+
λ

p+ v
)+C

r(1− p− v)
(1− v)(p+ v)

i.e.,

C =
v
p
(λ +Gλ (0)) (3.31)

Where we have utilized (3.30).

Combining equations (3.27) and (3.31), we have ∀x ∈ Z+

Jλ (x) = Gλ (x)+
v
p
(λ +Gλ (0)) (3.32)

�

Remark: Here is a renewal argument that yields the same result. Notice from the Bellman Equation for

Gλ (x) that we do not account for the cost of the node placed when the gallery ends and the corridor takes a turn.

The renewal argument then yields:

Jλ (x) = Gλ (x)+
v

r+ p
(λ + Jλ (0)) (3.33)

where v
r+p is the probability that the corridor continues given that a gallery ends. We do not account for the cost of

the sensor placed at the end of the corridor. This is a constant cost that is incurred for all deployments. The same

argument also shows that,

Jλ (0) = Gλ (0)+
v

r+ p
(λ + Jλ (0)) (3.34)
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from which it follows that

Jλ (0) =
r+ p

p
Gλ (0)+

v
p

λ

i.e.,

Jλ (0) = Gλ (0)+
v
p
(Gλ (0)+λ ) (3.35)

Substituting into the expression for Jλ (x) yields

Jλ (x) = Gλ (x)+
v

r+ p

(
(λ +Gλ (0))+

v
p
(Gλ (0)+λ )

)
(3.36)

i.e.,

Jλ (x) = Gλ (x)+
v
p
(Gλ (0)+λ ) (3.37)

We have already proved in Theorem 3.2.2 that the structure of the placement set Pλ for the multiple corridor

problem is identical with that of the single corridor problem which was studied in the thesis ([13]) and in the paper

([14]). It is shown in ([13]) that the optimal placement set Pλ , for the straight-line corridor problem, is of the form

Pλ = [r∗
λ
,r∗

λ
+1,r∗

λ
+2, . . . ,∞) (3.38)

for an optimal r∗
λ
∈ Z+. This implies that in our problem of a corridor with turns, the optimal placement policy will

also have threshold form. Now we formulate the problem as an Optimal Stopping Problem in the next section.

3.2.2 Optimal Stopping Formulation

In the previous section we obtained the structure of an optimal placement policy. In this section, we will show that

the one-step-look-ahead (OSLA) rule provides an equivalent characterisation of optimal placement sets. This result

then yields a simple computational procedure for r∗
λ

. Consider the placement problem along a straight line segment.

The motivation to consider the OSLA rule comes from the observation that when a relay is placed and the path

continues, it is a renewal point for the decision process. The cost-to-go at this point (i.e., Gλ (0,c)) can be taken to

be the termination cost in a stopping problem that starts at the point at which the previous relay was placed. For this

stopping problem, the OSLA policy compares at each step the cost of placing a relay with the cost of continuing for

one more step and placing a relay. When placing a relay at distance x, we incur a cost of d(x)+λ and the cost-to-go

from which is Gλ (0,c) since the placement point is a renewal point of the process. The cost of continuing one
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step ahead and placing is d(x+1) if the gallery ends and d(x+1)+λ +Gλ (0,c) otherwise. Thus, the associated

placement set is given by

Pλ =
{

x ∈ Z+ : d(x)+λ +Gλ (0,c)≤ (p+ v)d(x+1)+(1− p− v)(d(x+1)+λ +Gλ (0,c))
}

=
{

x ∈ Z+ : d(x+1)−d(x)≥ (p+ v)(λ +Gλ (0,c))
}
. (3.39)

Lemma 3.2.5. There exists a threshold rλ such that Pλ = {rλ ,rλ +1, · · · ,∞}.

Proof. This follows from the convexity property of the function d(·). The convexity of d(·) implies that d(x+

1)−d(x) is non-decreasing in x. We have also assumed that d(x+1)−d(x) tends to infinity as x increases (see

Section 2.2.1). On the other hand, the right hand side (RHS) of (3.39) does not depend on x. This shows the

existence of a threshold for the OSLA policy. �

We now conclude this section by showing that the OSLA policy is optimal for relay placement along any straight

line segment in the lattice path.

Theorem 3.2.6. P̂λ = Pλ , i.e., r∗
λ
= rλ .

Proof. A. P̂λ ⊂ P̄λ :

Consider any x ∈ P̂λ . Since the optimal policy for all such x is to place a relay, we may write, from Equa-

tion (3.17) that

Gλ (x,c) = λ +d(x)+(p+ v)d(1)+(1− p− v)Gλ (1,c) (3.40)

Also if x ∈ P̂λ , then we must have x+1 ∈ P̂λ (because of the threshold structure of the optimal policy). Hence we

also have

Gλ (x+1,c) = λ +d(x+1)+(p+ v)d(1)+(1− p− v)Gλ (1,c) (3.41)

Using Eqn. (3.41) to substitute for Gλ (x+1,c), we obtain, from the definition of P̂λ ,

λ +d(x)+(p+ v)d(1)+(1− p− v)Gλ (1,c)≤ (p+ v)d(x+1)+(1− p− v)(λ +d(x+1)+(p+ v)d(1)+

(1− p− v)Gλ (1,c)) (3.42)

i.e. d(x+1)−d(x)≥ (p+ v)(λ +(p+ v)d(1)+(1− p− v)Gλ (1,c)) (3.43)

Now, as asserted in Proposition (3.2.3),

Gλ (0,c) = (p+ v)d(1)+(1− p− v)Gλ (1,c) (3.44)
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substituting (3.44) into (3.42), we obtain

d(x+1)−d(x)≥ (p+ v)(λ +Gλ (0,c)) (3.45)

i.e. x ∈ P̄λ . Which proves

Pλ ⊂ P̄λ (3.46)

Taking account the threshold structure of the sets, this in turn implies that

r∗
λ
≥ r̄λ (3.47)

To show P̂λ = P̄λ as claimed in the theorem, it is now enough to prove that r∗
λ
= r̄λ .

B. r∗
λ
= r̄λ :

We have already shown that r∗
λ
≥ r̄λ . If possible, suppose that r∗

λ
> r∗

λ
− 1 ≥ r̄λ . Then we have r∗

λ
− 1 ∈ P̄λ ,

but r∗
λ
−1 /∈ P̂λ and r∗

λ
∈ P̂λ .

Since r∗
λ
−1 ∈ P̄λ , we have

d(r∗
λ
)−d(r∗

λ
−1)≥ (p+ v)(λ +Gλ (0,c)) (3.48)

We work backward in the above derivation up to equation (3.42) and utilize Eqn. (3.44) to obtain

λ +d(r∗
λ
−1)+Gλ (0,c)≤ (p+ v)d(r∗

λ
)+(1− p− v)(λ +d(r∗

λ
)+Gλ (0,c)) (3.49)

Since, r∗
λ
−1 /∈ P̂λ , from Eqn. (3.17), we have

(p+ v)d(r∗
λ
)+(1− p− v)Gλ (r

∗
λ
,c)< λ +d(r∗

λ
−1)+Gλ (0,c) (3.50)

Also since r∗
λ
∈ P̂λ , we have from Eqn. (3.17),

Gλ (r
∗
λ
,c) = λ +d(r∗

λ
)+Gλ (0,c) (3.51)

Combining Equations (3.50) and (3.51), we see that

(p+ v)d(r∗
λ
)+(1− p− v)(λ +d(r∗

λ
)+Gλ (0,c))< λ +d(r∗

λ
−1)+Gλ (0,c) (3.52)
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Now we have a contradiction between Eqns. (3.49) and (3.52). Hence, what we assumed at the outset was wrong

and we must have r∗
λ
= r̄λ . This proves the theorem. �

3.3 Computation of the Optimal Threshold r∗
λ

In this section, we leverage the result in Theorem 3.2.6 to provide a simple method for computing the optimal

placement thresholds r∗
λ

. For the straight line problem and for a given threshold r, let us first define gλ (r) to be the

expected cost-to-go starting with the state (0,c) (i.e., just after a relay has been placed). Using a renewal argument,

it can be seen that

gλ (r) =
r

∑
k=1

(1− (p+ v))(k−1)(p+ v)d(k)+(1− (p+ v))r(λ +d(r)+gλ (r)) (3.53)

where the first term accounts for cases where the gallery ends at k th step which is before or at r (a cost of d(k) is

induced) and the second term for other cases (a relay is placed at r and the process restarts). Solving for gλ (r), we

get

gλ (r) =
1

1− (1− p− v)r

(
(1− p− v)r(λ +d(r))+

r

∑
k=1

(p+ v)(1− p− v)k−1d(k)
)
. (3.54)

Clearly, gλ (r∗λ ) = Gλ (0,c). The following result provides a simple technique for computing r∗
λ

.

Proposition 3.3.1. r∗
λ
= min{r ∈ Z+ : d(r+1)−d(r)≥ (p+ v)(λ +gλ (r))}.

Proof. Let ∆(r) = d(r+1)−d(r). Define the sets

Sλ = {r ∈ Z+ : ∆(r)≥ (p+ v)(λ +gλ (r))}

S∗
λ

= {r ∈ Z+ : ∆(r)≥ (p+ v)(λ +gλ (r
∗
λ
))}

Then, we have from the OSLA rule (3.39) r∗
λ
= minS∗

λ
. Let rλ = minSλ . We want to show that r∗

λ
= rλ . We note

that gλ (r) is minimized at r = r∗
λ

, i.e., gλ (r∗λ )≤ gλ (r), ∀r ∈ Z+. Now since rλ ∈ Sλ , we have:

∆(rλ )≥ (p+ v)(λ +gλ (rλ ))≥ (p+ v)(λ +gλ (r
∗
λ
))

This implies that rλ ∈ S∗
λ

and hence, r∗
λ
≤ rλ . On the other hand, since r∗

λ
∈ S∗

λ
, we have ∆(r∗

λ
)≥ (p+v)(λ +gλ (r∗λ )).

This implies that, r∗
λ
∈ Sλ . Hence, rλ ≤ r∗

λ
. �

3.3.1 A bound on gλ (r)

In this subsection, we find an upperbound of gλ (r). This enables us to restrict our search range to finite values while

computing r∗
λ

using Proposition 3.3.1. Let
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S(r) =
r

∑
k=1

(p+ v)(1− p− v)k−1 (3.55)

Note that S(r) is monotonically increasing in r ∈ Z+. Hence S(1) = p+ v≤ S(r) ∀r ∈ Z+.

We have the following expression for gλ (r) for the LOS case.

gλ (r) =
(1− p− v)r

S(r)
(λ +d(r))+

1
S(r)

r

∑
k=1

(p+ v)(1− p− v)k−1d(k) (3.56)

Now we upperbound each of the two terms seperately. First consider the second term.

1
S(r)

r

∑
k=1

(p+ v)(1− p− v)k−1d(k) (3.57)

≤ 1
S(r)

∞

∑
k=1

(p+ v)(1− p− v)k−1d(k) (3.58)

≤ 1
S(1)

∞

∑
k=1

(p+ v)(1− p− v)k−1d(k) (3.59)

=
1

p+ v
Ed (3.60)

Here E() denotes the expectation over the geometric distribution {(p+ v)(1− p− v)k−1,k = 1,2, . . . ,}.

Since the raw moments of all order (≥ 1) of the Geometric distribution is finite, this expectation can be shown to be

finite, for d(k) = Pm + γkη , η ≥ 1.

Now consider the first term.

(1− p− v)r

S(r)
(λ +d(r)) (3.61)

≤ (1− p− v)r

p+ v
(λ +d(r)) (3.62)

=
1

p+ v
exp(−β r)(λ +d(r)) (3.63)

Where, β =− ln(1− p− v)> 0.

We can calculate an explicit upperbound for the function h(r) = exp(−β r)(λ +d(r)),r ∈ R , for d(r) = Pm + γrη

using simple calculus.

Thus we have a computable upperbound on gλ (r) for the type of delay functions considered in the thesis.

3.4 An Efficient Fixed Point Iteration Algorithm Using the OSLA rule

In this section, we present an efficient fixed point iteration algorithm using the OSLA rule as presented in 3.39

for finding the optimal policy as well as the optimal cost-to-go for a given set of parameter values λ , p,q and the
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one-step delay function d(·). The advantage of this algorithm over the direct minimization of the cost-to-go function

g(·) as discussed in the previous paragraphs is two folds.

• On the theoretical side, this iterative algorithm avoids performing explicit optimization altogether, which,

otherwise is to be performed numerically over the whole range of R+. Without any structure on the objective

function, direct numerical minimization of g(·) is difficult and often unsatisfactory, which invariably uses

some sort of heuristic search over R+.

• On the practical side, this algorithm is observed to be extremely fast to converge (requires 3−4 iterations

typically) and is proved to be convergent within a finite number of iterations. This is extremely desirable in

applications such as rapid deployment in emergency situations for which the algorithm is targetted to.

In the following, we first present the iterative algorithm. Then we prove its correctness and finite termination

properties.

For the sake of brevity and clarity of expressions, we consider the equivalent St. Line problem with parameter p.

We also replace gλ (·) by g(·) and r∗
λ

by r∗ and Jλ (0) = ming(·) by g∗ in this section.

Algorithm 1 Computes g∗ and r∗ for the St. Line Problem

Require: 0 < p < 1, λ ≥ 0
1: h← 0
2: while 1 do
3:

rh←min{r ∈ Z+ : p(λ +h)≤ ∆(r)}

gh ← 1
1− (1− p)rh

(
(1− p)rh(λ +d(rh))+

rh

∑
k=1

(p)(1− p)k−1d(k)

)
.

4: if gh == h then
5: break;
6: end if
7: h← gh
8: end while
9: return h, rh

We now establish the following lemmas and propositions. We use them to prove the main theorem in this section,

i.e., the proof of correctness and finite convergence of Algorithm 1.

Let us denote the value of variable h at the beginning of kth iteration of Algorithm 1 by h(k) with h(0) = 0. Then we

prove the following

Lemma 3.4.1. h(k) ≥ g∗ for k ≥ 1.
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Proof. We have h(k)
(1)
= g(h(k−1))

(2)
≥ g∗.

Where (1) follows directly from successive iterations of the algorithm and (2) follows from the fact that g∗ is the

infimum of g(·). �

Now we derive an equation characterizing the threshold policy in general. We recall that, for all j ∈ Z+,

∆( j) = d( j+1)−d( j). It follows that, for r ≥ 1,

d(r) =
r−1

∑
j=0

∆( j)+d(0) (3.64)

Define, for h≥ 0,

r(h) = min{r ∈ Z+ : p(λ +h)≤ ∆(r)} (3.65)

The cost to go for the threshold policy with threshold r(h), starting from the state (0,c), which we denote by

g(h), can be written as (suppressing the argument (h) in g(h) and r(h), for convenience of writing)

g =
r

∑
k=1

(1− p)k−1 pd(k)+(1− p)r(λ +d(r)+g)

Denoting, for k ≥ 1, pk = p(1− p)k−1, and using Eqn. (3.64), we can rewrite the previous expression as

g =
r

∑
k=1

pk

(
k−1

∑
j=0

∆( j)+d(0)

)
+(1− p)r(λ +d(r)+g)

=
r

∑
k=1

pk

(
k−1

∑
j=0

∆( j)

)
+(1− (1− p)r)d(0)+(1− p)r(λ +d(r)+g)

Rearranging the order of the sums in the first term, and using Eqn. (3.64) to substitute for d(r)−d(0), we obtain

g =
r−1

∑
j=0

(
r

∑
k= j+1

pk +(1− p)r

)
∆( j)+d(0)+(1− p)r(λ +g)

Finally, recognising that the sum of the probabilities multiplying ∆( j) in the first expression is just (1− p) j, and

reintroducing the argument (h), we obtain

g(h) =
r(h)−1

∑
j=0

(1− p) j
∆( j)+d(0)+(1− p)r(h)(λ +g(h)) (3.66)
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We can write this relation in an alternative way by rearranging as follows:

g(h) =
r(h)−1

∑
j=0

(1− p) j
∆( j)+d(0)+(1− p)r(h)(λ +g(h))

=
r(h)−1

∑
j=0

(1− p) j
∆( j)+d(0)+

(
1−

r(h)−1

∑
j=0

(1− p) j p

)
(λ +g(h))

=
r(h)−1

∑
j=0

(1− p) j(∆( j)− p(λ +g(h)))+d(0)+λ +g(h)

which implies that

0 =
r(h)−1

∑
j=0

(1− p) j (∆( j)− p(λ +g(h)))+d(0)+λ (3.67)

Using the above equation, we establish the following Lemma.

Lemma 3.4.2. If h > g∗ then h > g(h).

Proof. First, consider h > g∗ and such that r(h) = r∗. But then g(h) = g∗, and we conclude that h > g(h).

Next, consider h > g∗ and such that r(h)≥ r∗+1. From Eqn. (3.65), we conclude that

p(λ +h) > ∆(r(h)−1)> ∆(r(h)−2)> · · · (3.68)

p(λ +h) ≤ ∆(r(h))< ∆(r(h)+1)< · · · (3.69)

Applying Eqn. (3.67) to h = g∗, we obtain

0 =
r∗−1

∑
j=0

(1− p) j (∆( j)− p(λ +g∗))+d(0)+λ

from which we derive

r∗−1

∑
j=0

(1− p) j
∆( j) =

r∗−1

∑
j=0

(1− p) j p(λ +g∗))− (d(0)+λ )

Then applying Eqn. (3.67) to the given h, we obtain

0 =
r(h)−1

∑
j=0

(1− p) j (∆( j)− p(λ +g(h)))+d(0)+λ

=
r∗−1

∑
j=0

(1− p) j (∆( j)− p(λ +g(h)))+
r(h)−1

∑
j=r∗

(1− p) j (∆( j)− p(λ +g(h)))+d(0)+λ
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Substituting for ∑
r∗−1
j=0 (1− p) j∆( j) from the previous expression

0 =
r∗−1

∑
j=0

(1− p) j p(g∗−g(h)))+
r(h)−1

∑
j=r∗

(1− p) j (∆( j)− p(λ +g(h)))

≤
r(h)−1

∑
j=r∗

(1− p) j (∆( j)− p(λ +g(h)))

<
r(h)−1

∑
j=r∗

(1− p) j(p(λ +h)− p(λ +g(h)))

= p(h−g(h))
r(h)−1

∑
j=r∗

(1− p) j

where the first inequality follows from g∗ ≤ g(h) for all h, and the second from Eqn. (3.68). Since 0 < p < 1, we

conclude that

h > g(h)

�

Corollary 3.4.3. g(h) has a unique fixed point.

Proof. We know that g(h) has a fixed point at h = g∗. Now consider the following cases

Case 1: h > g∗

In this case, from lemma 3.4.2 we know that h > g(h). Hence g(·) can not have a fixed point which is strictly greater

that g∗.

Case 2: h < g∗

In this case we have h < g∗
(1)
≤ g(h). Where (1) follows from the fact that g∗ = infg(·). Hence in this case we have

h < g(h). Thus g(·) can not have a fixed point which is strictly less than g∗.

Combining the above cases the proof follows.

�

Lemma 3.4.4. The sequence {h(k)}k≥1 is non-increasing i.e. h(k+1) ≤ h(k), with the equality sign holding iff

h(k) = g∗.

Proof. We have for all k ≥ 1, h(k+1) (1)
= g(h(k))

(2)
≤ h(k)

Here (1) follows from successive iterations of the fixed point iterations and (2) follows from lemma 3.4.1 and 3.4.2.

Clearly the equality sign in the lemma holds iff equality in (2) holds, i.e. iff h(k) is a fixed point of g(·). Then from

corollary 3.4.3 it follows that h(k+1) = h(k) iff h(k) = g∗.

�
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Lemma 3.4.5. The sequence {r(h(k))}k≥1 is non-increasing i.e. r(h(k+1))≤ r(h(k)), with the equality sign holding

iff r(h(k+1)) = r∗.

Proof. Recall that

r(h) = min{r ∈ Z+ : p(λ +h)≤ ∆(r)}

Now take h2 > h1. We have

r(h2) = min{r ∈ Z+ : p(λ +h2)≤ ∆(r)} (3.70)

≥ min{r ∈ Z+ : p(λ +h1)≤ ∆(r)} (3.71)

= r(h1) (3.72)

Hence the function r(h) is non-decreasing in h. Thus from Lemma 3.4.4 it follows that the sequence {r(h(k))}k≥1 is

non-increasing.

Now note that the function g(h) depends on h only through r(h). Hence if r(h(k)) = r(h(k+1)), we must have

g(h(k+1)) = g(h(k)) = h(k+1). Hence from Lemma 3.4.3, it follows that h(k+1) = g∗, and hence r(h(k+1)) = r∗. �

Now we state and prove the main theorem in this section.

Theorem 3.4.6. Algorithm 1 returns with g∗ and r∗ in finite time.

Proof. From Lemma 3.4.5, it follows that starting with a finite integer r(h(1)), the sequence {r(h(k))} decreases

strictly at each iteration until it reaches the optimum r∗. At this point we have h(k) = g(h(k)) = g∗ and the algorithm

terminates. �

3.5 Solving the Constrained MDP

Once we get the optimal threshold r∗
λ

, we can calculate the expected number of relays used, Eπ∗
λ

N, following a

similar argument as in (3.54), we get

Eπ∗
λ

N =
(p+ v)r∗

λ

1− (1− (p+ v))r∗
λ

. (3.73)

We now invoke Lemma 2.2.1 to provide a solution for the constrained placement problem (2.2) on the random

lattice path, with initial state (0,0). We begin by making following observations about Eπ∗
λ

N.

1) Eπ∗
λ

N decreases with λ ; this is as expected, since as each relay becomes “costlier” fewer relays are used on

the average.

2) Even when λ = 0, Eπ∗
λ

N is finite. This is because d(0)> 0, i.e., there is a positive cost for a 0 length link.

Define the value of Eπ∗
λ

N with λ = 0 to be ρmax.
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3) Eπ∗
λ

N vs. λ is a piecewise constant function. This occurs because the relay placement positions are discrete.

For a range of values of λ the same threshold is optimal. This structure is also evident from the results based on the

optimal stopping formulation and the OSLA rule in Section 3.2.2. It follows that for a value of λ at which there is a

step in the plot, there are two optimal deterministic policies, π and π , for the relaxed problem. Let ρ = Eπ N and

ρ = Eπ N.

We have the following structure of the optimal policy for the constrained problem:

Theorem 3.5.1. (i) For ρavg ≥ ρmax the optimal placement threshold is r∗0.

(ii) For ρavg < ρmax, if there is a λ such that (a) Eπ∗
λ

N = ρavg then the optimal policy is π∗
λ

, or (b) ρ < ρavg < ρ

then the optimal policy is obtained by mixing π and π .

Proof. (i) is straight forward. For proof of (ii)-(a), see Lemma 2.2.1. Define 0 < α < 1 such that (1−α)ρ +αρ̄ =

ρavg. We obtain a mixing policy πm by choosing π w.p. 1−α and π̄ w.p. α at the beginning of the deployment. For

any policy π we have

EπmC+λEπmN

= (1−α)(EπC+λρ)+α(Eπ̄C+λρ̄)

≤ (1−α)(EπC+λEπ N)+α(EπC+λEπ N)

= EπC+λEπ N (3.74)

The inequality is because π and π are both optimal for the problem (2.1) with relay price λ . Thus, we have shown

that πm is also optimal for the relaxed problem. Using this along with EπmN = ρavg in Lemma 2.2.1 we conclude

the proof. �

3.6 Summary

In this chapter, we studied the problem of impromptu relay deployment along a corridor with LOS propagation. In

section 3.1, we formulated the problem as an Infinite Horizon Total Cost MDP. In section 3.3 we solved the relaxed

problem and showed the equivalence of the problem with the single corridor problem solved by Prasenjit et al. in

[13]. In section 3.3.2, we formulated the problem as an optimal stopping problem and proved the optimality of the

One-Step-Look-Ahead policy in Theorem 3.3.5. We developed a simple expression for calculating the threshold in

section 3.4, based on a renewal argument. Finally, in section 3.5 we solved the original constrained MDP from the

solution of the relaxed problem.



Chapter 4

The Non-Line-Of-Sight Case

In this section we consider relay placement along a random lattice path, where a usable radio link can exist between

any pair of points on the path, even though they may not be in line-of-sight along the path. The traffic model, network

operation model, and the per-hop cost model described in Section 2.1 continue to hold. We formulate the problem

as a total cost infinite horizon MDP and show that the optimal placement set corresponds to a two-dimensional

boundary upon crossing which a relay must be placed. We characterize this boundary via a formulation as an

optimal stopping problem, and study its sensitivity to some parameters of the problem.

4.1 State Space, Actions, and Transition Structure

We formulate the problem as a sequential decision process starting at the entrance to the building (also the entrance of

the corridor), i.e., at the point (x0,0), where we recall that x0≥ 1. The decision points are indexed by k∈{0,1,2, · · ·},

with k = 0 corresponding to the decision to be made at the point (x0,0). We also refer to the kth decision point as the

location k. For k ≥ 0, let Xk = (mk,nk) denote the coordinates of placement operative with respect to the previous

relay (or the Base-Station) where mk is the number of steps East and nk is the number of step North.

Let, for k≥ 0, Zk ∈ {e,c}, where Zk = e means at Step k, the corridor has ended and Zk = c denotes that the corridor

will continue at least for one more step. Since the corridor extends at least one step beyond its entrance, we see that

Z0 = c. The state {φ} denotes the cost-free termination state, i.e., the state after the end of the corridor has been

discovered. The state-space is given by

S = {(m,n,c),(m,n,e}
⋃
{φ} (m,n) ∈ Z2

+ (4.1)

Finally by the sequence Uk ∈Ak, we denote the sequence of actions. The action Uk = 1 denotes the action of placing

a relay node at the kth step and Uk = 0 denotes the action of not placing a relay node at the kth step. The permissible

action sets are as follows

28
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• A(x,z) = {0,1} for z = c

• A(x,z) = {1} for z = e

To simplify the notation, hereafter drop Zk from the state notation if Zk = c.

Given that (Xk,Zk) = (m,n,z), and if the action Uk is taken, we now write down the state transition probabilities

The state-transitions are shown as follows

• If uk is 0,

(m,n) −→ (m+1,n) w.p. (1− p)q (4.2)

(m,n) −→ (m+1,n,e) w.p. pq (4.3)

(m,n) −→ (m,n+1) w.p. (1− p)(1−q) (4.4)

(m,n) −→ (m,n+1,e) w.p. p(1−q) (4.5)

• If uk is 1,

(m,n) −→ (1,0) w.p. (1− p)q (4.6)

(m,n) −→ (1,0,e) w.p. pq (4.7)

(m,n) −→ (0,1) w.p. (1− p)(1−q) (4.8)

(m,n) −→ (0,1,e) w.p. p(1−q) (4.9)

• If Zk = e the only allowable action is uk = 1 and we enter into the state {φ} w.p. 1

(m,n,e) −→ {φ} w.p. 1 (4.10)

• If the current state is φ we stay in the same cost-free termination state irrespective of the control uk

{φ} −→ {φ} w.p. 1 (4.11)

If Zk = e then the only allowable action is u = 1 and we enter into the state {φ}. If the current state is φ we stay

in the same cost-free termination state irrespective of the control u. Then one step cost when the state is s is given
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by:

c(s,u) =


d(m,n) if s = (m,n,e)

λ +d(m,n) if u = 1 and s = (m,n,c)

0 if u = 0 or s = φ .

4.2 Solving the Relaxed Problem

4.2.1 Optimal Placement

For simplicity we will write the state (m,n,c) as simply (m,n). Let Jλ (m,n) denote the optimal cost-to-go when the

current state is (m,n). When at some step the state is (m,n) the deployment person has to decide whether to place

or not place at relay at the current step. By [5, Prop. 1.1, Page 137] Jλ (·, ·) is a solution to Bellman’s equation,

Jλ (m,n) = min{cp(m,n),cnp(m,n)} (4.12)

where cp(m,n) and cnp(m,n) denotes the expected cost incurred when the decision is to place and not place a relay,

respectively. cp(m,n) is given by

cp(m,n) = λ +d(m,n)+(1− p)(1−q)Jλ (0,1)+(1− p)qJλ (1,0)+ pd(1). (4.13)

The above equation for cp(m,n) may be understood as follows. If we place a relay at the state (m,n) we incur a

relay cost of λ and a delay of d(m,n). This accounts for the first two terms in cp(m,n). After placing the relay there

are four possibilities, viz

• The path continues for one more step in the eastward direction and does not end, thus reaching the state (1,0).

This event has a probabibility of occurance (1− p)q and cost-to-go Jλ (1,0). This accounts for the third term.

• The path continues for one more step in the eastward direction and ends there. This event has a probability of

occurance pq and incurs a delay cost of d(1). (We do not count the cost of the relay at the end of the path.)

This accounts for the fourth term.

• The path continues for one more step in the northward direction and does not end, thus reaching the state

(0,1). This event has a probabibility of occurance (1− p)(1−q) and cost-to-go Jλ (1,0). This accounts for

the fifth term.

• The path continues for one more step in the northward direction and ends there. This event has a probability

of occurance p(1−q) and incurs a delay cost of d(1). This accounts for the last term in the expression of

cp(m,n).
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Similarly,

cnp(m,n) = (1− p)qJλ (m+1,n)+ pqd(m+1,n)+(1− p)(1−q)Jλ (m,n+1)+ p(1−q)d(m,n+1) (4.14)

The terms in the above expression may also be explained similarly as before. If we denote the optimal placement set

by Pλ , then

Pλ = {(m,n) : cp(m,n)≤ cnp(m,n)} (4.15)

After some algebraic manipulations, we finally arrive at the following expression for Pλ

Pλ = {(m,n) : (1− p)(qH(m+1,n)+(1−q)H(m,n+1))+q∆1(m,n)+(1−q)∆2(m,n)

≥ λ +(1− p)qJλ (1,0)+(1− p)(1−q)Jλ (0,1)+ pd(1)} (4.16)

Where H(m,n) := Jλ (m,n)−d(m,n).

Now we prove the following Lemma.

Lemma 4.2.1. H(m,n)≡ Jλ (m,n)−d(m,n) is non decreasing in both m ∈ Z+ and n ∈ Z+.

Proof. Consider a sequential relay placement problem where we have K steps to go. Hence, the corridor length is

the min of K and the value sampled from Geom(p). This can be formulated as a finite horizon MDP with horizon

length K. For any given (m,n), we may write JK(m,n), K ≥ 2 recursively as

JK(m,n) = min{cp(m,n),cnp(m,n)}

min{λ +d(m,n)+(1− p)qJK−1(1,0)+ pqd(1)+(1− p)(1−q)JK−1(0,1)+ p(1−q)d(1),

(1− p)qJK−1(m+1,n)+ pqd(m+1,n)+(1− p)(1−q)JK−1(m,n+1)+ p(1−q)d(m,n+1)}

For K = 1, since a sensor must be placed at the next step, we have

J1(m,n) = min{λ +d(m,n)+d(1),qd(m+1,n)+(1−q)d(m,n+1)}

so,

H1(m,n) := J1(m,n)−d(m,n)

= min{λ +d(1),q(d(m+1,n)−d(m,n))+(1−q)(d(m,n+1)−d(m,n))}

= min{λ +d(1),q∆1(m,n)+(1−q)∆2(m,n)}

From the theorem (2.2.2), it follows that H1(m,n) is non decreasing in both m and n. Now we make the induction
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hypothesis and assume that HK−1(m,n) is non decreasing in m and n. We show that HK(m,n) is also non decreasing

in m and n.

We have,

HK(m,n) = JK(m,n)−d(m,n)

min{λ +(1− p)qJK−1(1,0)+ pqd(1)+(1− p)(1−q)JK−1(0,1)+ p(1−q)d(1),

(1− p)(qHK−1(m+1,n)+(1−q)HK−1(m,n+1))+q(d(m+1,n)−d(m,n))+(1−q)(d(m,n+1)−d(m,n))}

= min{λ +(1− p)qJK−1(1,0)+ pqd(1)+(1− p)(1−q)JK−1(0,1)+ p(1−q)d(1),

(1− p)(qHK−1(m+1,n)+(1−q)HK−1(m,n+1))+q∆1(m,n)+(1−q)∆2(m,n)}

By the induction hypothesis and theorem (2.2.2), it follows that HK(m,n) is non decreasing in both m and n.

Using Proposition 1.6 of ([5]), the proof is complete by taking the limit as K→ ∞. �

The above result yields the following theorem which characterizes the optimal placement set Pλ

Theorem 4.2.2. The optimal placement policy is a threshold policy, i.e., there exist mappings m∗ : Z+→ Z+ and

n∗ : Z+→ Z+ which defines the optimal placement set Pλ as follows,

Pλ =
⋃

n∈Z+

{(m,n)|m≥ m∗(n)} (4.17)

=
⋃

m∈Z+

{(m,n)|n≥ n∗(m)} (4.18)

Here Z+ denotes the set of non negative integers.

Proof. Referring to (4.16), utilizing Lemma (4.2.1) and the Theorem (2.2.2), it follows that for a fixed n ∈ Z+, the

LHS of the inequality (4.16), describing the placement set Pλ is an increasing function of m, while the RHS is a

finite constant. Also, because of the assumed properties of the function d(), ∆1(m,n)→ ∞ as m→ ∞, for any fixed

n. Hence it follows that there exists an m∗(n) ∈ Z+ such that (m,n) ∈Pλ ∀m≥ m∗(n). Hence we may write

Pλ =
⋃

n∈Z+

{(m,n)|m≥ m∗(n)} (4.19)

The second characterization follows by similar arguments. �

We have the following immediate corollary from the above theorem.

Corollary 4.2.3. m∗(n) is non-increasing in n and n∗(m) is non-increasing in m. ((m,n) ∈ Z2
+)
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4.3 Optimal Stopping Formulation

The transparent-wall problem also may be formualted as an optimal stopping problem exactly like that of the

opaque-wall problem as is done in section 3.4. In Section 4.0.1 and 4.0.2, we observed that the relaxed problem in

the context of Radio Transparent Wall, shown in Equation (2.1) is a total cost Infinite Horozon Markov decision

process. The problem terminates, with probability one, with the corridor ending and a sensor being placed at this

point. The time homogeneous structure of the problem permits us to conclude that each point at which a relay

is placed (the corridor not having ended) is a renewal point, from where the cost to go is J(0,0). Now consider

the decision process as the operative walks after having placed a relay. If after x steps the path has not ended,

there are two actions possible: to place a relay, which can be viewed as a “stop” action, upon taking which a

“termination” cost J(0,0) is incurred, or to not place a relay, which can be viewed as a “continue” action. If a

relay is not placed then another step is taken after which the corridor may end, with probability p, and a sensor is

placed; with probability (1− p) the corridor does not end and another decision to stop or to continue has to be taken.

We thus see that between relay placements (or between the base-station and the first relay placement) we have an

optimal stopping problem. Consider now the one-step-look-ahead policy discussed below.

In the One-Step-Look-Ahead policy, we compare the costs of placing a relay at the current step with that of

continuing without placing in the current step and placing in the next step instead. Let us call the resulting placement

set P̄λ defined as follows,

P̄λ = {(m,n) ∈ Z2
+|λ +d(m,n)+ J∗(0,0)≤ p(qd(m+1,n)+(1−q)d(m,n+1))+

(1− p)(qd(m+1,n)+(1−q)d(m,n+1)+λ + J∗(0,0))}

= {(m,n) ∈ Z2
+|p(λ + Jλ (0,0))≤ qd(m+1,n)+(1−q)d(m,n+1)−d(m,n)}

= {(m,n) ∈ Z2
+|p(λ + Jλ (0,0))≤ q∆1(m,n)+(1−q)∆2(m,n)} (4.20)

It can be seen from the theorem (2.2.2), the placement set defined by (4.20) also implements a threshold policy, i.e.

the set (4.20) may be written as follows

P̄λ =
⋃

n∈Z+

{(m,n)|m≥ m̄(n)} (4.21)

=
⋃

m∈Z+

{(m,n)|n≥ n̄(m)} (4.22)

For some mappings m̄ : Z+→ Z+ and n̄ : Z+→ Z+. We have the following Theorem. In the following we show that

policy obtained from solving the detailed Bellman Equation and from the OSLA rule are equivalent. We establish

this result by the series of lemmas as follows. Recall that Pλ is the placement set obtained from solving the detailed

Bellman Equation and P̄λ is the placement set obtained from the OSLA policy.

Lemma 4.3.1. Pλ ⊂ P̄λ
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Proof. Suppose that (m,n) ∈ Z2
+ and (m,n) ∈Pλ .

Then from Eqn. (4.17) (m+1,n) ∈Pλ and from Eqn. (4.18),(m,n+1) ∈Pλ .

Since (m,n) ∈Pλ , we have from Eqns. (4.13), (4.14) and (4.15), that

λ +d(m,n)+(1− p)qJλ (1,0)+ pqd(1)+(1− p)(1−q)Jλ (0,1)+ p(1−q)d(1)≤

(1− p)qJλ (m+1,n)+ pqd(m+1,n)+(1− p)(1−q)Jλ (m,n+1)+ p(1−q)d(m,n+1) (4.23)

Also we may similarly argue as in Proposition (3.2.3) to prove that at the state (0,0), it is optimal not to place.

Hence,

Jλ (0,0) = (1− p)qJλ (1,0)+ pqd(1)+(1− p)(1−q)Jλ (0,1)+ p(1−q)d(1) (4.24)

Since (m+1,n) ∈Pλ and (m,n+1) ∈Pλ , we have (utilizing Eqn. (4.13) and (4.24)),

Jλ (m+1,n) = λ +d(m+1,n)+ Jλ (0,0) (4.25)

Jλ (m,n+1) = λ +d(m,n+1)+ Jλ (0,0) (4.26)

Now we combine (4.23), (4.25) and (4.26), to obtain

p(λ + Jλ (0,0))≤ q∆1(m,n)+(1−q)∆2(m,n) (4.27)

This proves that

(m,n) ∈ P̄λ

And hence, Pλ ⊂ P̄λ (4.28)

�

Taking into account the threshold structure of the sets (viz Eqns (4.17), (4.18), (4.21), (4.22)) the above lemma

implies that

n∗(m)≥ n̄(m) ∀m ∈ Z+ (4.29)

m∗(n)≥ m̄(n) ∀n ∈ Z+ (4.30)

We now prove the following technical lemma which characterizes the set Pλ .

Lemma 4.3.2. Let N ≡ (m,n) ∈ Z2
+ and (m,n) ∈ P̄λ with (m,n+1) ∈Pλ and (m+1,n) ∈Pλ , then N ∈Pλ

In words, if a lattice point N ≡ (m,n) lies in the set P̄λ with its northward and eastward neighbour belonging to
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the set Pλ , then the point N also lies in the set Pλ .

Proof. If possible, suppose (m,n) /∈Pλ . Then we have the following inclusion relations valid

(m,n) ∈ P̄λ (4.31)

(m,n) /∈Pλ (4.32)

(m,n+1) ∈Pλ (4.33)

(m+1,n) ∈Pλ (4.34)

Since (m,n) ∈ P̄λ , we have from Eqns. (4.20),

p(λ + Jλ (0,0))≤ q∆1(m,n)+(1−q)∆2(m,n) (4.35)

Now (m,n+1) ∈Pλ , and (m+1,n) ∈Pλ , hence we have from Eqns (4.25) and (4.26)

Jλ (m+1,n) = λ +d(m+1,n)+ Jλ (0,0)

Jλ (m,n+1) = λ +d(m,n+1)+ Jλ (0,0)

Now we can work backwards the steps in lemma (4.3.1) to obtain

λ +d(m,n)+(1− p)qJλ (1,0)+ pqd(1)+(1− p)(1−q)Jλ (0,1)+ p(1−q)d(1)≤

(1− p)qJλ (m+1,n)+ pqd(m+1,n)+(1− p)(1−q)Jλ (m,n+1)+ p(1−q)d(m,n+1)

But it was assumed that (m,n) /∈Pλ . Hence we may write from Eqns. (4.13) and (4.14) that

λ +d(m,n)+(1− p)qJλ (1,0)+ pqd(1)+(1− p)(1−q)Jλ (0,1)+ p(1−q)d(1)>

(1− p)qJλ (m+1,n)+ pqd(m+1,n)+(1− p)(1−q)Jλ (m,n+1)+ p(1−q)d(m,n+1) (4.36)

Eqns (4.36) and (4.36) contradicts. Hence what we assumed was incorrect and indeed (m,n) ∈Pλ �

Now we use the above lemma to prove the following

Lemma 4.3.3. P̄λ ⊂Pλ

Proof. Keeping in mind the threshold structure of the sets ((4.17), (4.18), (4.21), (4.22)), we only need to show that

the inequalities in Eqns (4.29) and (4.30) are in fact equalities.

We fix an m ∈ Z+ and show the first inequality (4.29) is a equality, i.e. n∗(m) = n̄(m). We again prove by contradic-

tion.



4.3 Optimal Stopping Formulation 36

If possible, let n∗(m)> n∗(m)−1≥ n̄(m). Then we have the following inclusion relations valid (by the characteri-

zation (4.26))

(m,n∗(m)) ∈Pλ (4.37)

(m,n∗(m)−1) ∈ P̄λ (4.38)

(m,n∗(m)−1) /∈Pλ (4.39)

Let us index the collection of lattice-points (m+ i,n∗(m)−1) by Ni ∈ P̄λ , i ∈ Z+. Then by the characterization

(4.25), we conclude that there exists a finite k ∈ Z+, s.t. Nk ∈Pλ . Hence we have the following inclusion relations

valid

(m+ k,n∗(m)−1) ∈Pλ (4.40)

(m+ k−1,n∗(m)) ∈Pλ (4.41)

The last inclusion relation holds because of characterization (4.25) and noting that (m∗(n∗(m)) = m.

Now we see that for the point Nk−1, the conditions of lemma (4.3.2) are satisfied. Hence Nk−1 ∈Pλ . This in turn

makes the point Nk−2 subject to the condition of lemma (4.3.2) (Remembering that (m+ k−2,n∗(m)) ∈Pλ ) and

hence Nk−2 ∈Pλ . Working this way (right to left) we ultimately conclude that N0 ≡ (m,n∗(m)−1) ∈Pλ . This

contradicts with equation (4.39) and proves the result. �

Combining lemmas (4.3.1) and (4.3.3) we have the following theorem

Theorem 4.3.4. Pλ = P̄λ

We now prove a general monotonicity property of the cost-to-go functions Jλ (0,0).

Proposition 4.3.5. Jλ2(0,0)≥ Jλ1(0,0) for λ2 ≥ λ1

Proof. Assume that the policies π2 and π1 are an optimal policy for relay-cost λ2 and λ1. Then we may write

Jλ2(0,0) = Eπ2C+λ2Eπ2N (4.42)

≥ Eπ2C+λ1Eπ2N (4.43)

≥ Eπ1C+λ1Eπ1N (4.44)

= Jλ1(0,0) (4.45)

Where inequality 4.43 follows from the fact λ2 ≥ λ1 and inequality 4.44 follows from the fact that policy π1 is

optimal for relay-price λ1. �

The following lemma proves the monotonicity property of the sets Pλ w.r.t λ .
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Lemma 4.3.6. For all λ2 > λ1 > 0 we have

Pλ2 ⊂Pλ1 (4.46)

Proof. We make use of the propostion (4.3.5), which states that Jλ2(0,0)≥ Jλ1(0,0). Again since λ2 ≥ λ1, we have

Jλ2(0,0)+λ2 ≥ Jλ1(0,0)+λ1 (4.47)

Now let (m,n) ∈ Z2
+ s.t. (m,n) ∈Pλ2 . Hence from (4.20), we have that

q∆1(m,n)+(1−q)∆2(m,n) ≥ p(λ2 + Jλ2(0,0))

≥ p(λ1 + Jλ1(0,0))

Thus,

(m,n) ∈Pλ1 (4.48)

Hence we get,

Pλ2 ⊂Pλ1 (4.49)

�

We have the following direct corollary from the above lemma.

Corollary 4.3.7. For a fixed n, m∗(n) is non decreasing with λ . Similar is the case for n∗(m).

The following lemma proves the symmetry of Jλ ,q(0,0) w.r.t. the point q = 1
2 .

Lemma 4.3.8. Jλ ,q(0,0) = Jλ ,1−q(0,0)

Proof. This can be shown from the geometry of the placement set. From the OSLA policy, we know that the optimal

placement set is given as

Pλ = {(m,n) ∈ Z2
+|p(λ + Jλ ,q(0,0))≤ qd(m+1,n)+(1−q)d(m,n+1)−d(m,n)} (4.50)

Now we relabel the co-ordinates. This will not change the optimal placement set. So we replace q by 1−q and m

by n and vice-versa. Now remembering that d(m,n) = d(n,m), we see that the optimal placement set is given as

P ′
λ
= {(m,n) ∈ Z2

+|p(λ + Jλ ,1−q(0,0))≤ qd(m+1,n)+(1−q)d(m,n+1)−d(m,n)} (4.51)
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But as argued before, we must have Pλ = P ′
λ

. Hence, comparing the above two sets, we see that we must have

Jλ ,q(0,0) = Jλ ,1−q(0,0) (4.52)

�

Corollary 4.3.9. q = 1
2 is a stationary point of Jλ ,q(0,0)

This follows from previous theorem. We have,

Jλ ,q(0,0) = Jλ ,1−q(0,0)

Assuming Jλ ,q(0,0) is differentiable w.r.t. q, we differentiate both sides of the above equation w.r.t. q to obtain

Jλ ,q(0,0)
′ =−Jλ ,1−q(0,0)

′

Putting q = 1
2 , we get

J
λ , 1

2
(0,0)′ =−J

λ , 1
2
(0,0)′

or, J
λ , 1

2
(0,0)′ = 0 (4.53)

Establishing the fact that q = 1
2 is a stationary point of Jλ ,q(0,0). �

We now observe from simulation results that Jλ ,q(0,0) monotonically decreases with q ∈ (0, 1
2 ) and increases

monotonically in q ∈ ( 1
2 ,1). Using this result we prove our next theorem

Theorem 4.3.10. m∗(0) decreases with q ∈ [0, 1
2 ]

Proof. To establish this theorem we look into the placement set in R2 and take the floor of the reals to get the actual

boundary. Let the smooth-curve, defining the Placement set in R2 cuts the horizontal axis at x∗(0). Putting y = 0

and for a certain q , in the above Placement set Pλ , we get an equation for x∗(0) ≡ x∗q(0) (We always have an

equality for the boundary).

p(λ + Jλ ,q(0,0)) = qd(x∗q(0)+δ ,0)+(1−q)d(x∗q(0),δ )−d(x∗q(0),0) (4.54)

Solving the above equation, we get an explicit expression for x∗q(0). We differentiate both sides of equation [4.54],

w.r.t. q and substitute d(x,y) = h(x2 + y2), where r(.) is another convex increasing function whose existence has
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been assumed previously. We get ,

pJλ ,q(0,0)′ = d(x∗q(0)+δ ,0)−d(x∗q(0),δ )+2q(x∗q(0)+δ )x∗q(0)
′h′((x∗q(0)+δ )2)+

2(1−q)x∗q(0)x
∗
q(0)

′h′(x∗q(0)
2 +δ 2)−2x∗q(0)x

∗
q(0)

′h′(x∗q(0)
2)≥ d(x∗q(0)+δ ,0)

d(x∗q(0),δ )+2x∗q(0)x
∗
q(0)

′(qh′((x∗q(0)+δ )2)+(1−q)h′(x∗q(0)
2,δ 2)−h′(x∗q(0)

2) (4.55)

Now for simplicity of notation, let x∗q(0)≡ x. Then the RHS above becomes

h((x+δ )2)−h(x2 +δ
2)+2xx′[qh′((x+δ )2)+(1−q)h′(x2 +δ

2)−h′(x2)]

Since h(.) is increasing in its argument, the first term h((x+δ )2)−h(x2 +δ 2)> 0. On the other hand, we have

assumed that the third derivative of h() is positive. This makes h′() convex. Hence using convexity of h′(), second

term within the braces is atleast

h′(q(x+δ )2 +(1−q)(x2 +δ 2))−h′(x2)

= h′(x2 +δ 2 +2qδx)−h′(x2)> 0

Where the last inequality follows from strictly increasing nature of h′(). Now the second observation implies that

the LHS of inequality [4.55] is strictly negative for q ∈ [0,0.5]. Now if x∗q(0)
′ ≡ x′ is positive anywhere in the range

q ∈ [0,0.5], then following the analysis above, RHS will be strictly positive, hence a contradiction ! Thus m∗(0)

decreases with q ∈ [0,0.5]. �

4.4 Calculating the Optimal Cost-To-Go after Placement

We observe from (4.20) that Jλ (0,0) is required to obtain the OSLA placement set Pλ . Jλ (0,0) is the optimal

cost-to-go after a relay is placed and the path continues. Our aim now is to compute Jλ (0,0). To this end, for each

h≥ 0, define

P(h) = {(m,n) ∈ Z2
+ : p(λ +h)≤ q∆1(m,n)+(1−q)∆2(m,n)}. (4.56)

This will yield a countable collection of sets, which include Pλ . For each such set P , define the placement

boundary B as follows

B = {(m,n) ∈P : (m−1,n) ∈Pc or (m,n−1) ∈Pc} (4.57)

where Pc := Z2
+−P . For each P define g(P) as the cost-to-go (starting from (0,0)) if the placement set P is

employed. This can be computed by a renewal argument by conditioning on whether the lattice path ends before
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the placement boundary, and if not then where the placement boundary is hit. To this end, we need the following

definitions. The boundary B can be written as a disjoint union of three sets Bw, Bs and Bnull where

Bw = {(m,n) ∈B : (m−1,n) ∈B} (4.58)

Bs = {(m,n) ∈B : (m,n−1) ∈B} (4.59)

Bnull = {(m,n) ∈B : (m−1,n) /∈B and

(m,n−1) /∈B}. (4.60)

It is easy to check that these sets are mutually disjoint and B = Bw∪Bs∪Bnull . For a depiction of the various

boundary points for the optimal boundary, see Fig. 5.4.

Note that, we can reach (m,n) ∈Bnull ∪Pc either from West (m−1,n) or South (m,n−1) in the final step.

However, to reach a point (m,n) ∈Bs, we must reach the point (m−1,n) in the penultimate step and then take a

final step in the East direction. Similarly, to reach a point (m,n) ∈Bw, we must reach the point (m,n−1) in the

penultimate step and then take a final step in the Northward direction. We can write down the following reaching

probabilities. Let P((m,n),e) denote the probability of reaching the point (m,n) with the path ending there and

P((m,n),c) denote the probability of reaching the point (m,n) with the path continuing. Hence we have,

P((m,n),e) =
(m+n

m

)
p(1− p)m+n−1qm(1−q)n if (m,n) ∈Pc∪Bnull(m+n−1

m

)
p(1− p)m+n−1qm(1−q)n if (m,n) ∈Bw(m+n−1

m−1

)
p(1− p)m+n−1qm(1−q)n if (m,n) ∈Bs

Similarly we have,

P((m,n),c) =
(m+n

m

)
(1− p)m+nqm(1−q)n if (m,n) ∈Pc∪Bnull(m+n−1

m

)
(1− p)m+nqm(1−q)n if (m,n) ∈Bw(m+n−1

m−1

)
(1− p)m+nqm(1−q)n if (m,n) ∈Bs

The renewal argument outlined earlier yields:

gλ (P) = ∑
(m,n)∈Pc∪B

P((m,n),e)d(m,n)+ ∑
(m,n)∈B

P((m,n),c)(g(P)+λ +d(m,n)) (4.61)
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Solving for gλ (P), we obtain

gλ (P) =
1

1−∑(m,n)∈B P((m,n),c)
×

(
∑

(m,n)∈Pc∪B
P((m,n),e)d(m,n)+ ∑

(m,n)∈B
P((m,n),c)(λ +d(m,n))

)
. (4.62)

It then follows that Jλ (0,0) is obtained by minimizing g(P) over the placement sets. From (4.20), given Jλ (0,0),

one can obtain the OSLA placement set Pλ and thus also the optimal placement set Pλ (since Pλ = Pλ from

Theorem 4.3.4).

As in the LOS case, it has been shown in the following section that for each 0 < p < 1 and λ ≥ 0, there exists

gλ (< ∞), such that Jλ (0,0)≤ gλ . In order to compute Jλ (0,0) we need to search only over the real line segment

[0,gλ ].

4.5 An Upper-Bound gλ for the Optimal Cost-to-Go Jλ (0,0)

Since cost-to-go for any policy is atleast equal to the optimal cost-to-go Jλ (0,0), we may upper bound Jλ (0,0)

by the cost-to-go for any policy. Now consider the policy P ′ in which we place a node at each step until the

lattice-path ends. If the cost-to-go for the policy P ′ be denoted by gλ , then we can write the following renewal

theoretic equation for gλ

gλ = λ + pd(1)+(1− p)(λ +d(1)+gλ )

gλ =
1
p
((2− p)λ +d(1)) (4.63)

Then it follows that

Jλ (0,0)≤
1
p
((2− p)λ +d(1)) (4.64)

4.6 An Efficient Fixed Point Iteration Algorithm for Obtaining the Opti-

mal Policy

As in the LOS case, we now present a fixed point iteration algorithm based on the OSLA rule 4.20. The notations

are similar to those used in the LOS case in section 3.4.

In the following, we first derive an equation which is satisfied by any threshold policy of the form (4.56). Then we

prove a series of lemmas to establish the correctness and finite convergence of Algorithm 2.
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Algorithm 2 Calculate J(0,0) and Pλ

Require: 0 < p < 1, 0≤ q≤ 1, λ ≥ 0

h← 0

1: while 1 do
2:

Ph←{(m,n) ∈ Z2
+ : p(λ +h)≤ ∆(m,n)}

Bh←{(m,n) ∈Ph : (m−1,n) ∈Pc
h , Or,(m,n−1) ∈Pc

h}

gh←
1

1−∑(m,n)∈Bh
P((m,n),c)

(
∑

(m,n)∈Pc
h
⋃

Bh

(P((m,n),e)d(m,n)+ ∑
(m,n)∈Bh

P((m,n),c)(λ +d(m,n))

)

3: if gh == h then
4: break;
5: end if
6: h← gh
7: end while
8: return gh, Ph

From Eqn 4.61 we have,

g(h) = ∑
(m,n)∈Pc(h)∪B(h)

P((m,n),e)d(m,n)+ ∑
(m,n)∈B(h)

P((m,n),c)(g(h)+λ +d(m,n))

Now we introduce some notations.

• A path π is a walk through the integer lattice, starting from the origin (0,0). If the point (m,n) is on the path

π , the path π either stops at the next point (w.p. p) or continues atleast one more step further (w.p. 1− p). In

either case, the next point on the path is (m+1,n) w.p. q or, (m,n+1) w.p. (1−q). The set of all paths is

denoted by Π. The set of all paths that end at the point (m,n) is denoted by Πmn, (m,n)∈Pc(h)
⋃

B(h). The

set of path that continues beyond the boundary B(h) is denoted by Π(c) = Π−
⋃

(m,n)∈Pc(h)
⋃

B(h) Πmn =

](m,n)∈B(h)Πmn(c). Where Πmn(c) denotes the set of paths that reaches at the point (m,n) ∈ B(h) and

continues. The symbol ] denotes disjoint union.

• Let us denote the set of edges whose both the end vertices belongs to the set Pc(h)
⋃

B(h) by E. Consider a

path π ∈Π. It is completely characterized by its edge set Eπ .

• Reaching probability r(m,n) of a point (m,n) ∈Pc(h)
⋃

B(h) is defined as the probability that a random

path π ∈ Π reaches the point (m,n), without the path ending at that point. Clearly r(m,n) =
(m+n

m

)
(1−

p)m+nqm(1−q)n
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• The incremental cost function δ : E −→ R+ is defined as follows

δ (e) = d(m+1,n)−d(m,n) = ∆1(m,n) if e = {(m,n),(m+1,n)} (4.65)

= d(m,n+1)−d(m,n) = ∆2(m,n) if e = {(m,n),(m,n+1)} (4.66)

The incremental cost function allows us to write

d(m,n) = ∑
e∈Eπ

δ (e)+d(0,0) (4.67)

The above expression is valid for all π ∈Πmn if (m,n) ∈Pc(h)
⋃

B(h) and π ∈Πmn(c) if (m,n) ∈B(h)

Now consider

∑
(m,n)∈Pc(h)∪B(h)

P((m,n),e)d(m,n)+ ∑
(m,n)∈B(h)

P((m,n),c)d(m,n)

= ∑
(m,n)∈Pc(h)∪B(h)

∑
π∈Πmn

p(π)
(

∑
e∈Eπ

δ (e)+d(0,0)
)
+ ∑

(m,n)∈B(h)
∑

π∈Πmn(c)
p(π) ∑

e∈Eπ∩E

(
δ (e)+d(0,0)

)
= ∑

e∈E
δ (e) ∑

π∈Π:e∈Eπ

p(π)+d(0,0)

= ∑
e∈E

δ (e)p(e)+d(0,0) (4.68)

Where by p(e) we denote the probability that a random path continues through the edge e ∈ E.

Now if e is horizontal i.e. e = {(m,n),(m+1,n)},(m,n) ∈Pc(h), we have p(e) = qr(m,n) and δ (e) = ∆1(m,n).

Similarly if e is vertical i.e. e = {(m,n),(m,n+1)},(m,n) ∈Pc(h), we have p(e) = (1−q)r(m,n) and δ (e) =

∆2(m,n). Using these relations, we may rewrite Eqn 4.68 as follows

∑
(m,n)∈Pc(h)

r(m,n)
(

q∆1(m,n)+(1−q)∆2(m,n)
)
+d(0,0)

= ∑
(m,n)∈Pc(h)

r(m,n)∆(m,n)+d(0,0) (4.69)

Now consider the probability ∑(m,n)∈B(h)P((m,n),c). It is the probability that a random path continues beyond the

boundary B(h). Hence we may write

∑
(m,n)∈B(h)

P((m,n),c)

= 1− ∑
(m,n)∈Pc(h)

⋃
B(h)

P((m,n),e)

= 1− ∑
(m,n)∈Pc(h)

r(m,n)p (4.70)
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Now we are ready to derive an equation similar to Eqn 3.67 as in the LOS case. From Eqn 4.61 we have

g(h) = ∑
(m,n)∈Pc(h)∪B(h)

P((m,n),e)d(m,n)+ ∑
(m,n)∈B(h)

P((m,n),c)(g(h)+λ +d(m,n))

=

(
∑

(m,n)∈Pc(h)∪B(h)
P((m,n),e)d(m,n)+ ∑

(m,n)∈B(h)
P((m,n),c)d(m,n)

)
+(λ +g(h))

(
∑

(m,n)∈B(h)
P((m,n),c)

)
= ∑

(m,n)∈Pc(h)
r(m,n)∆(m,n)+d(0,0)+(λ +g(h))

(
1− ∑

(m,n)∈Pc(h)
r(m,n)p

)
= ∑

(m,n)∈Pc(h)
r(m,n)

(
∆(m,n)− p(λ +g(h))

)
+d(0,0)+λ +g(h)

Where we have used Eqns 4.69 and 4.70 in the above derivation. Simplifying the above expression, we get the

following equation which is satisfied by any placement policy of the form 4.56.

0 = ∑
(m,n)∈Pc(h)

r(m,n)
(

∆(m,n)− p(λ +g(h))
)
+d(0,0)+λ (4.71)

We now prove the following lemma.

Lemma 4.6.1. If h > g∗ then h > g(h).

Proof. We recall the definition of Pc(h).

Pc(h) = {(m,n) ∈ Z2
+ : p(λ +h)> ∆(m,n)} (4.72)

Since h > g∗, we immediately conclude that P∗c ⊂Pc(h).

From Eqn 4.71, we may write the following expression for the optimal policy P∗

∑
(m,n)∈P∗c

r(m,n)∆(m,n) = p(λ +g∗)
(

∑
(m,n)∈P∗c

r(m,n)
)
−
(

d(0,0)+λ

)
(4.73)

We may similarly write the following expression for the policy P(h)

∑
(m,n)∈Pc(h)

r(m,n)∆(m,n) = p(λ +g(h))
(

∑
(m,n)∈Pc(h)

r(m,n)
)
−
(

d(0,0)+λ

)
(4.74)
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Now since P∗c ⊂Pc(h), we may expand the LHS of 4.74 as follows

∑
(m,n)∈Pc(h)

r(m,n)∆(m,n) (4.75)

= ∑
(m,n)∈P∗c

r(m,n)∆(m,n)+ ∑
(m,n)∈Pc(h)−P∗c

r(m,n)∆(m,n) (4.76)

< ∑
(m,n)∈P∗c

r(m,n)∆(m,n)+ p(λ +h)
(

∑
(m,n)∈Pc(h)−P∗c

r(m,n)
)

(4.77)

= p(λ +g∗)
(

∑
(m,n)∈P∗c

r(m,n)
)
−
(

d(0,0)+λ

)
+ p(λ +h)

(
∑

(m,n)∈Pc(h)−P∗c
r(m,n)

)
(4.78)

Where in Eqn. 4.77 we have used equation 4.72 and in Eqn. 4.78, we have substituted the value for the quantity

from Eqn 4.73.

Using Eqn 4.74, we may alternatively write the LHS of 4.74 as follows

∑
(m,n)∈Pc(h)

r(m,n)∆(m,n)

= p(λ +g(h))
(

∑
(m,n)∈Pc(h)

r(m,n)
)
−
(

d(0,0)+λ

)
= p(λ +g(h))

(
∑

(m,n)∈P∗c
r(m,n)+ ∑

(m,n)∈Pc(h)−P∗c
r(m,n)

)
−
(

d(0,0)+λ

)
(4.79)

Now comparing Eqns 4.78 and 4.79, we may write

p(λ +g(h))
(

∑
(m,n)∈P∗c

r(m,n)+ ∑
(m,n)∈Pc(h)−P∗c

r(m,n)
)
< p(λ +g∗)

(
∑

(m,n)∈P∗c
r(m,n)

)
+ p(λ +h)× ∑

(m,n)∈Pc(h)−P∗c
r(m,n)

Rearrenging the above inequality, we get

p(g(h)−g∗)
(

∑
(m,n)∈P∗c

r(m,n)
)
< p(h−g(h))

(
∑

(m,n)∈Pc(h)−P∗c
r(m,n)

)
(4.80)

But we know that g∗ = infg(h). Hence g(h)−g∗ ≥ 0. Thus from the above inequality, we conclude that

h > g(h) (4.81)

�

Lemma 4.6.2. h(k) ≥ g∗ for k ≥ 1.

Proof. We have h(k)
(1)
= g(h(k−1))

(2)
≥ g∗.

Where (1) follows directly from successive iterations of the algorithm and (2) follows from the fact that g∗ is the

infimum of g(·). �
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Corollary 4.6.3. g(h) has a unique fixed point.

Proof. We know that g(h) has a fixed point at h = g∗. Now consider the following cases

Case 1: h > g∗

In this case, from lemma 4.6.1 we know that h > g(h). Hence g(·) can not have a fixed point which is strictly greater

that g∗.

Case 2: h < g∗

In this case we have h < g∗
(1)
≤ g(h). Where (1) follows from the fact that g∗ = infg(·). Hence in this case we have

h < g(h). Thus g(·) can not have a fixed point which is strictly less than g∗.

Combining the above cases the proof follows. �

Lemma 4.6.4. The sequence {h(k)}k≥1 is non-increasing i.e. h(k+1) ≤ h(k), with the equality sign holding iff

h(k) = g∗.

Proof. We have for all k ≥ 1, h(k+1) (1)
= g(h(k))

(2)
≤ h(k)

Here (1) follows from successive iterations of the fixed point iterations and (2) follows from lemma 4.6.2 and 4.6.1.

Clearly the equality sign in the lemma holds iff equality in (2) holds, i.e. iff h(k) is a fixed point of g(·). Then from

corollary 4.6.3 it follows that h(k+1) = h(k) iff h(k) = g∗.

�

Lemma 4.6.5. The sequence {Pc(h(k))}k≥1 is non-increasing i.e. Pc(h(k+1))⊂Pc(h(k)), where the containment

is proper unless Pc(h(k)) = Pc∗.

Proof. Recall that

Pc(h) = {(m,n) ∈ Z2
+ : p(λ +h)> ∆(m,n)}

Now take h2 > h1. We have

Pc(h1) = {(m,n) ∈ Z2
+ : p(λ +h1)> ∆(m,n)} (4.82)

⊂ {(m,n) ∈ Z2
+ : p(λ +h2)> ∆(m,n)} (4.83)

= Pc(h2) (4.84)

Thus from Lemma 4.6.4 it follows that the sequence {Pc(h(k))}k≥1 is non-increasing.

Also Pc(h(k+1)) = Pc(h(k)) only if g(h(k+1)) = g(h(k)) = h(k+1). Hence from Lemma 4.6.3, it follows that

h(k+1) = g∗, and hence Pc(h(k)) = Pc∗. �

Now we prove the main theorem in this section.

Theorem 4.6.6. Algorithm 2 returns with g∗ and Pc∗ in finite time.
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Table 4.1: Iterations required for Algorithm 2 to converge for different p’s and q’s (η = 3)
p q iterations
0.002 0.5 6
0.002 0.3 6
0.002 0.1 6
0.02 0.5 5
0.02 0.3 5
0.02 0.1 5
0.2 0.5 3
0.2 0.3 3
0.2 0.1 3

Proof. From Lemma 4.6.5, it follows that starting with a finite set Pc(h(1)), the sequence of sets {Pc(h(k))}k≥1

decreases strictly at each iteration until it reaches the optimum Pc∗. At this point we have h(k) = g(h(k)) = g∗ and

the algorithm terminates. �

4.7 Solving the Constrained MDP

In Section 4.4 we devised a procedure to obtain an optimal placement set Pλ , using which the expected number of

relays used by the optimal policy can be computed as

Eπλ
N =

∑(m,n)∈Bλ
P((m,n),c)

1−∑(m,n)∈Bλ
P((m,n),c)

(4.85)

where P((m,n),c) is the reaching probability corresponding to Pλ . A plot of Eπλ
N vs. λ is given in Fig. 5.2.

Recalling the discussion in Section 3.5, the solution to the constrained problem defined in Eqn. (2.2) can be

obtained using Theorem 3.5.1. As in Part (ii)-(b) of Theorem 3.5.1, whenever ρavg < ρmax, if there is a λ such that

ρ < ρavg < ρ , then one has to now mix between two optimal boundaries (unlike for the LOS case where we mix

between two thresholds) to obtain a solution for the constrained problem.

4.8 Summary

In this chapter, we studied the problem of impromptu relay deployment along a random corridor with NLOS

propagation. In section 4.1, we formulated the problem as an Infinite Horizon Total Cost MDP. In section 4.2.1,

we solved the relaxed problem and showed that the optimal policy is in the form of a two-dimensional threshold

policy. In section 4.3, we posed the problem as an optimal stopping problem and showed the equivalence of optimal

policy with the OSLA policy. In section 4.6 we proposed an efficient fixed-point-iteration algorithm to solve for the

optimal policy exactly and showed its correctness and finite termination properties.



Chapter 5

Numerical Results

In numerical work, we take the one-hop power function d(r) = Pm + γrη , where Pm = 0.1,γ = 0.01 and η = 2,

unless otherwise specified.

In Figure 3 we provide a set of numerical results for the common parameter value p = 0.002.

In Figure 5.2 we plot Eπλ
N and Eπλ

C vs. λ . Since λ is the cost per relay, as expected, Eπλ
N decreases as λ

increases. We observe that Eπλ
C and the optimal total cost Jλ (0,0) increase as λ increases. A close examination

of Figure 3(b) reveals that both the plots are step functions. This is due to the discrete placement at lattice points,

which results in the same placement boundary being optimal for a range of λ values. Thus, as seen in Section 3.5, at

the λ values where there is jump in Eπλ
N, a random mixture of two policies is needed.

The plots in Figures 5.1 and 5.2 were for q = 0.5. Figure 5.3 shows the variation of the total optimal cost

Jλ (0,0) with q. The variation is symmetric about q = 0.5 For a given path length, q = 0.5 results in the path folding

frequently. In such a case, since NLOS propagation is permitted, and the path loss is isotropic, fewer relays are

required to be placed. On the other hand, when q is close to 0 or to 1 the path takes fewer turns and more relays are

needed, leading to larger values of the total cost.

In Figure 5.4 we show an optimal placement boundary for p = 0.002,q = 0.5, and η = 3. Since q = 0.5 the

boundary is symmetric about the m = n line. The various sets of boundary points defined in Section 4.4 are shown

in different colours in Figure 3(d). In Figure 5.5 we show the variation of optimal boundaries with η . As η , the

path loss exponent, increases the hop cost increases for a given hop distance. This results in relays needing to be

placed more frequently. As can be seen the placement boundaries shrink with increasing η . We also notice that the

placement boundary for η = 2 is a straight line; indeed this provable result holds for η = 2 for any values of p and

q.

5.1 Comparison Between a Simple and the Optimal Policy

In this section we propose a simple policy and compare its performance with the optimal policy.

48
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Figure 5.1: Variation of Optimal Cost-to-go with ’Relay Price’ λ

5.1.1 The Simple Policy

We recall from the literature survey in Section 1.0.1 that prior literature invariably proposed the policy of placing a

relay after the RF signal strength from the previous relay has dropped below a threshold. For isotropic propagation

(as we have assumed in this thesis), this is equivalent to placing the relay after a circular boundary is crossed. With

this in mind, we obtained the simple optimal constant distance placement policy 1numerically (in a manner similar

to what is described in Section 4.4). More specifically we now consider the placement set to be

Ph(α) = {(m,n) ∈ Z2
+ : m2 +n2 ≥ α

2} α ∈ R+

From the very definition (5.1) of Ph(α), it is clear that it is a threshold policy. Hence we may similarly define

Bh(α) = {(m,n) ∈P(α) : (m−1,n) ∈Pc(α) or

(m,n−1) ∈Pc(α)} (5.1)

1Here we use the words “simple” and “heuristic” interchangably.
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Figure 5.2: Variation of Expected Cost and Expected Number of Relay nodes used with Relay Price λ

where Phc
(α) := Z2

+−Ph(α).

And the cost-to-go for this policy Ph(α) can be calculated as

gλ (P
h(α)) =

1
1−∑(m,n)∈Bh(α)P((m,n),c)

(
∑

(m,n)∈Phc
(α)∪Bh(α)

P((m,n),e)d(m,n)+ ∑
(m,n)∈Bh(α)

P((m,n),c)(λ +d(m,n))

)
.

Subsequently gλ (P
h(α)) is minimized over α to get the optimal cost-to-go among this class of policies.

A sample result is provided in Figure 5.6, for the parameters p = 0.002,q = 0.5,η = 2. We observe that if the

path were to evolve roughly Eastward or Northward then the constant distance placement will result in many more

relays being placed. On the other hand if the path evolves diagonally (which has higher probability) then the two

placement boundaries will result in similar placement decisions. This observation shows up in Figure 5.7 where we

show the optimal cost for the constrained problem, with the constraint ρ being plotted on the horizontal axis. We

find that for q = 0.5 the optimal placement boundary and the optimal constant distance placement provide costs that

are almost indistinguishable at this scale. In this plot we also show the optimal cost for q = 1 (i.e., straight line

path); as expected, the cost is much larger since the path does not fold.

We have plotted the optimal policies (the placement boundaries, to be specific) corresponding to the same ρ values

for different choices of the parameters p and q. The figures are shown below. Red and blue points denote boundary

points in optimal and heuristic policies respectively. It can be observed that two policies match quite well in the

region where a random path with parameters p and q has a high reaching probability. The cost incurred using these

two policies also have been plotted subsequently and the curves are found to agree quite well. This explains the

reason why the simple policy performs quite close to the optimal policy.



5.1 Comparison Between a Simple and the Optimal Policy 51

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
220

230

240

250

260

270

280

q

A
v
g

. 
T

o
ta

l 
C

o
s
t,

 J
λ
(0

,0
)

 

 

Figure 5.3: Symmetric Variation of Cost-to-go about q = 1/2

However as shown in Figure 5.10(d), if we take a Parameter-agnostic-policy, i.e. we use a fixed constant distance

policy for different parameter values p,q, it is clear from the figure that the cost-to-go J(0,0) for such a policy for a

fixed λ is quite larger as compared to the optimal policy. Hence the threshold radius for the simple policy must be

adaptively changed with p and q to get a near-optimal performance.
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Chapter 6

Conclusion and Future Work

We considered the problem of placing relays on a random lattice path to optimize a linear combination of average

power cost and the average number of relays deployed. Two different propagation models, namely, LOS and NLOS,

were studied. The optimal placement policies for both the models were proved to be of threshold nature (single

threshold for the LOS case, Theorem 3.2; threshold boundary in the case of NLOS, Theorem 4.2). We further

proved the optimality of the OSLA rule (in Theorem 3.4 and 4.6, for LOS and NLOS cases, respectively). We have

developed an efficient fixed-point-iteration algorithm to compute the optimal policy for both the LOS and NLOS

cases. Through numerical work we observed that the performance (in terms of average power incurred for a given

relay constraint) of the best distance threshold policy is close to that of the optimal.

Our future work will comprise of extending the theoretical results obtained here to the scenario where we have

access to measurement of the time-varying wireless channel as we continue deploying. We also wish to extend our

results to more complicated deployment region than simple straight line segments as considered in this thesis.
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