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ABSTRACT

In this short paper, we consider the problem of designing a
near-optimal competitive scheduling policy to maximize the
freshness of available information uniformly across N mobile
users. Motivated by the unreliability and non-stationarity
of the emerging 5G-mmWave channels for high-speed users,
we forego of any statistical modeling assumptions of the
wireless channels and user-mobility. Instead, we allow the
channel states and the mobility patterns to be dictated by
an omniscient adversary. It is not difficult to see that no
competitive scheduling policy can exist for the correspond-
ing throughput-maximization problem in this adversarial
model. Surprisingly, we show that there exists a simple
online distributed scheduling policy with a finite compet-
itive ratio for maximizing the freshness of information in
this model. We also prove that the proposed policy is com-
petitively optimal up to an O(log N) factor.

1. INTRODUCTION

Apart from the throughput, maximizing the freshness of
information available at the user-end is a principal design
objective for the emerging 5G wireless standards. The Age-
of-Information (Aol) is a newly-proposed metric that cap-
tures the information-freshness in a quantitative fashion [1].
However, the channel states and user-mobility are challeng-
ing to model and predict in high-speed non-stationary envi-
ronments. This paper is concerned with the following ques-
tion: Does there exist a scheduling policy that minimizes
the maximum Aol across all users, irrespective of the chan-
nel dynamics and user-mobility patterns? The question is
considerably general, as it does not make any assumptions
on either the channel statistics or the user-mobility, both of
which may be dictated by an omniscient adversary in the
worst case. In this paper, we affirmatively answer the ques-
tion by showing that a simple distributed scheduling policy
is competitively optimal up to an O(log N) factor.

Closely related to this work, in a recent paper [2], we in-
vestigated the problem of minimizing the average Aol for N
static users confined to a single cell. There we showed that
the greedy Max-Age (MA) policy is competitively optimal
up to a factor of O(N) in the adversarial setting. In our
previous paper [3], we proved that the MA policy is opti-
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mal for minimizing the maximum Aol for static users hav-
ing stochastic binary erasure channels. Within the stochas-
tic framework, the paper [4] proposes a Max-Weight policy,
which is shown to be optimal up to a constant factor for min-
imizing the average Aol. Due to space constraints, we refer
the reader to the book [1] for a comprehensive introduction
to this active area of research and an extensive bibliography.

Contributions: In contrast with the existing works, this
is the first paper to study the problem of minimizing the
mazimum Aol for mobile users in an adversarial framework.
Our main results are summarized and contrasted with that
of [2] in Table 1. On the technical side, compared to [2],
the proof of achievability in Theorem 1 warrants the intro-
duction of additional concepts of “Max-users” and “super-
intervals”. This is essential because, due to users’ mobility,
the simple round-robin structure of the scheduled users in
[2] does not hold in this case. Furthermore, the proof of
converse in Theorem 2 proceeds differently, making use of a
maximal inequality similar to Massart’s lemma.

2. SYSTEM MODEL

A set of N users move around in an area having a total
of M Base Stations (BS). The coverage areas correspond-
ing to each BS (i.e., the cells) are disjoint. Time is slotted,
and at every new slot, a user can either stay in its current
cell or move to any other M — 1 cells of its choice. Our
mobility model is considerably general, as it does not make
any statistical assumptions on the speed or user movement
patterns. At each slot, all BSs receive a fresh update packet
for each user from an external source (e.g., a high-speed op-
tical backbone). The fresh packets replace the stale packets
in the BS buffers. Each BS can beamform and schedule a
downlink fresh packet transmission to only one user under
its coverage area at a slot. It is the scheduling decisions that
we can control and optimize. The channel state for any user
at any slot can be either Good or Bad. The BSs are assumed
to be oblivious to the current channel state conditions (i.e.,
no CSIT). If at any slot, a BS schedules a transmission to
a user (under its coverage area) having Good channel, the
user decodes the packet successfully. Otherwise, the packet
is lost. In the worst case, the states of the N channels (cor-
responding to N users) and the user movements at every
slot may be dictated by an omniscient adversary [5].

Cost Metric: We are concerned with competitively op-
timizing the information freshness for all users. Accord-
ingly, we define the N-dimensional state-vector h(t), where
h;i(t) denotes the length of the time interval prior to time
t before which the ¢*" user successfully received its most



Table 1: Summary of the results on the Competitive Ratios () in the adversarial framework

‘ Metrics ‘ Cost function Mobility Upper Bound Lower Bound ‘ Optimality gap |
‘ Average Age [2] ‘ NS SN hi(t) O(N?) O(N) ‘ O(N) ‘
‘ Maximum Age (This paper) ‘ Zle maxiL h;(t) O(N) Q(ln?’m) ‘ O(In(N)) ‘

recent packet. The variable h;(t) is known as the Age-of-
Information of the i*® user at time ¢ [1]. Clearly, the plot of
h;(t) has a saw-tooth shape that increases linearly with unit-
slope (i.e., hi(t+1) = hi(t) + 1) until the i*" user receives a
new packet. Upon reception of a new packet, h;(t) drops to
1. From that point onwards, h;(t) again continues increasing
and repeats the saw-tooth pattern [4]. The cost C(¢) at time
t is defined to be the maximum age among all users, i.e.,
C(t) = max; hi(t). The cumulative cost incurred over a
time-horizon of length T is defined as: Cost(T) = 3", C(t).

Performance index: As standard in the literature on
online algorithms, we compare the performance of any online
scheduling algorithm A against that of an optimal offline
scheduling algorithm OPT using the notion of competitive
ratio **, defined as follows:

A = ( Cost of the online policy A on o )

Cost of the offline OPT policy on o (1)

In the above definition, the supremum is taken over all finite-
length sequences o that encodes the channel states and user
locations at every slot. Note that, while the online policy A
has only causal information, the policy OPT is assumed to be
equipped with non-causal knowledge of the entire sequence
o right at the beginning. Our objective is to design an online
scheduling policy A with a small competitive ratio.

3. ACHIEVABILITY

Consider the following distributed scheduling policy:
Cellular Max-Age (CMA): At every slot, each BS j schedules
a downlink transmission to the user that has the highest age
among all users located in BS j’s coverage area at that slot
(ties are broken in an arbitrary but fixed order).

Theorem 1 below states a performance guarantee for CMA,
which is, quite surprisingly, independent of the number of
BSs M.

THEOREM 1. nMA < 2N.

PRrROOF: For any slot t, define the global Max-user that has
the highest age among all N users (ties are broken identi-
cally as in the CMA policy). The identity of the Max-user
changes with time. However, by definition, the CMA policy
continues to schedule the user corresponding to the current
Max-user irrespective of its location until the transmission
to it is successful. In the subsequent slot, a different user
assumes the role of the Max-user, and the process continues.

Let T; be the time slot at which a total of ¢ successful
packet transmissions have just been made exclusively by the
Max-users up to time 7;. Let A; = T; — T;—1 denote the
length of the i*® super-interval - defined as the time interval
between the i*" and i — 1*" successful transmissions by the
corresponding Max-user. The super-intervals are contiguous
and disjoint. Let us denote the Max-user corresponding to
the " super-interval by M;. As argued above, the user
M; gets scheduled by the CMA policy persistently during

the entire i'" super-interval of length A, irrespective of its
locations during that period. Note that, unlike the case
of static users [2], there could be more than one successful
transmissions within a super-interval by users other than the
Max-user.

We now claim that the Max-user M; corresponding to the

" super-interval must have a successful transmission by the
beginning of the last N — 1 super-intervals. If not, by the
pigeonhole principle, some other user j # M; must become
the Max-user at least twice in the previous N super-intervals.
However, this cannot be true as then the user j would have
less age than M; when the user j became the Max-user for
the second time in the previous N super-intervals.

Hence, at the k" slot of the ¢ super- 1nterval the age of
the Max-user M; is upper bounded by k+z 1 A;_j, where
for notational consistency, we have defined T =0,and A; =
0,Vj < 0. Thus, the cost C-MA incurred by the CMA policy
during the i*® interval may be upper-bounded as:

A, N—1 1 N-1
k=1 j=1 7j=1
(a) N—-1
< %(A?+A¢)+% (A + A7)

1

J
= —A2+ A+ ZA

where in (a), we have used the AM-GM inequality to con-
clude AjA;_; < %(Af + A?_j),l < j £ N — 1. Hence,
assuming that there are a total of K super-intervals in a
time-horizon of length T, the total cost incurred by the CMA
policy over the entire time horizon is upper bounded as:

Z CMA < % Z (QNA? n Ai>. )
=1
On the other hand, the cost incurred by the OPT policy
during the i*" super-interval is trivially lower bounded by
the sum of the ages of the user M; during the super-interval.
Note that, a Max-user consistently experience Bad channels
throughout the corresponding super-interval. Hence,

CostCNIA

A

OPT - 1,2, 3

CPT 2y (14 k) = AT+ DA, (3)
k=1

Finally, the cost of a entire horizon of length 7' may be
obtained by summing up the cost incurred in the constituent
super-intervals. Noting that Ag = 0, using Eqns. (2) and
(3), the competitive ratio °M* of the CMA policy may be
upper bounded as follows:

ZK CMA (a) % Zszl <2NA12 + Ai)
=1 1 S
s, O St (347 +54A0)

CMA _

<2N.




4. CONVERSE

THEOREM 2. For any online policy A, n* > Q5)-

ProOF: We establish a slightly stronger result by proving
the lower bound for the particular case when all N users
remain static at a single cell throughout the entire time-
horizon. Using Yao’s minimax principle, it is well-known
that a lower bound to the competitive ratios of all deter-
ministic online algorithms under any input channel state
distribution p yields a lower bound to the competitive ratio
in the adversarial framework, i.e.,

Eo~p(Cost of the best deterministic online policy)
Eo~p(Cost of OPT) '

To apply Yao’s principle in our setting, we construct the
following channel state distribution p: at any slot ¢, a user
is chosen independently and uniformly at random and as-
signed a Good channel. The rest of the N — 1 users are
assigned Bad channels for that slot. Hence, at any slot:
P(user i’s channel is Good) = 1/N, and is Bad otherwise.
The rationale behind the above choice of the channel state
distribution will be clear when we compute OPT’s expected
cost. With our chosen channel distribution p, we see that
only one user’s channel is in Good state at any slot. This
greatly simplifies the computation of OPT’s expected cost.
We lower bound the competitive ratio using Eqn. (4) by
lower-bounding the numerator and upper-bounding the de-
nominator for the above channel state distribution.

An Upper bound to OPT’s cost: The OPT policy,
with non-causal channel state information, schedules the
user having a Good channel at a slot. Thus, the limiting
distribution of the age of any user is Geometric (%), i.e.,

1 1\ 1
—(1—- = > 1,Vi.
N< N) , k>1,Vi

nt >

lim P(hi(t) =

t— oo

k) =

Hence, for upper-bounding the time-averaged cost of OPT
using Cesaro’s summation formula, we are required to upper-
bound the expected value of maximum of N dependent and
identically Geometrically distributed random variables. The
MGPF of the Geometric distribution G is given by:

EA/N
1—eX(1—-1/N)’
oo 0.W.

if A < —log(1—1/N)

E(exp(AG)) = {

Let the r.v. Hmax denote limiting max-age of the users. We
proceed as in the proof of Massart’s lemma for upper bound-
ing E(Hmax). For any —log(1 —1/N) > A > 0, we have:

exp (AE(Hmax))

(a)
< E(exp(AHmax))

A

e
AGi) € ——
E(exp( SIoea-L)

N
where the inequality (a) follows from Jensen’s inequality.
Taking natural logarithm of both sides, we get
1

E(Hmax) < 1= log (1-e*1-1/N)). (5)
Now, let us choose A = £, for some fixed o (0 < o < 1)
that will be determined later. First, we verify that, with
this choice for A\, we always have A < —log(1 — —) Using
the convexity of the function e”, we can write

1
1=e">e"+(0—z)e" = (1 —x)e"=¢" < E,Va: <1

(4

)

(6)

As a result, we have

1

(3
1 N N

o
et =eN <

—log(1 — i)

1
< — 5 le, AL N

Next, for upper-bounding the RHS of Eqn. (5), we start with
the simple analytical fact that for any 0 < a < 1,

1 _ 1 _ ax
inf 1= =)™
0<z<1 x

=1-a. (7)
This result can be verified by using Eqn. (6) to conclude
that for any 0 < = < 1, we have

1—(1—z)e*™ _ 1

>=—(1-

1—=x 11—«
x Tz >_

>1—a,

l—az’  l—ox =

where the infimum is achieved when & — 07. Substituting
@ = & in the inequality (7), we have the following bound

1—«
1—e*N1 - 1/N) > .
e ( IN) 2 —

Hence, using Eqn. (5), we have the following upper bound
to the expected Max-age under OPT:

E(Hmax) <1+ Elni, for some 0 < o < 1.
1o}

Setting a =1 —
E(Hmax) < NInN + o(N1n N).

ﬁ yields the following asymptotic bound:

(8)
A Lower Bound to the cost of any online policy .A:

Using Theorem 1 of [3], that gives the cost of the best online
policy, with the parameters p; = %,Vi, we have:

T

o1 A i oo L A 2
lim inf TIECost (T) = llTnLloI(l)f T ;E(mzax hi'(t)) > N°,VA. (9)

T—o0

Combining Eqns. (8) and (9) with Eqn. (4) and using Cesaro’s
summation formula, we have for any online policy .A:

. . A
A > sup ECost (T) hTHi)loIéfECOSt (T)/T > o N ) m
= 750 ECost®"(T) ~ limsupECost®*"(T)/T ~— "InN
T—o0
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