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Learning, Games and Networks

Prediction With Experts’ Advice

Prediction with Experts’ Advice - Setup [1]

Setting: We are playing a game with an opponent for T rounds. At each round t
we first output a real number x̂t and then the opponent reveals another real
number yt . Our (convex) loss at round t is `(xt , yt).

The Experts: There are N experts to assist us. At round t, the expert i forecasts
a number fi (t).

x̂t could be taken to be any function of the past and present forecasts.

Expert 1

Expert 2

Expert 3

forecasts={10,−4, 2, 30, . . .}

forecasts={20, 6,−50, 10, . . .}

forecasts={30,−5,−10, 42, . . .}

Observed Info: After each round we get to observe the loss incurred by each
experts `(fit , yt).
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Prediction With Experts’ Advice

Prediction Strategy

Problem Design an online strategy for selecting {x̂t} so that our cumulative loss
remains close to the best fixed expert in the hindsight.

Let L(i , t) denote the total loss of expert i up to time t − 1, i.e.,

L(i , t) =

t−1∑
τ=1

`(fi (τ), yτ ) (1)

Performance Metric: A natural metric to measure the performance of an online
algorithm π is to bound its regret Rπ(T ) up to time T defined as follows:

Rπ(T ) = max
y

(
Lπ(T )−min

i
L(i ,T )

)
A natural strategy is to take a weighted combination w(t) of experts’ prediction
at time t, where the weights are decreasing with the expert’s cumulative losses up
to time t − 1.

This ensures that we give more weights to the experts who are doing better in
terms of their total losses

In other words, for a suitable weight vector w(t), we predict

x̂t =

∑
i wi,t fi (t)∑

i wi,t
(2)

8 / 44



Learning, Games and Networks

Prediction With Experts’ Advice

Prediction Strategy

Problem Design an online strategy for selecting {x̂t} so that our cumulative loss
remains close to the best fixed expert in the hindsight.
Let L(i , t) denote the total loss of expert i up to time t − 1, i.e.,

L(i , t) =

t−1∑
τ=1

`(fi (τ), yτ ) (1)

Performance Metric: A natural metric to measure the performance of an online
algorithm π is to bound its regret Rπ(T ) up to time T defined as follows:

Rπ(T ) = max
y

(
Lπ(T )−min

i
L(i ,T )

)
A natural strategy is to take a weighted combination w(t) of experts’ prediction
at time t, where the weights are decreasing with the expert’s cumulative losses up
to time t − 1.

This ensures that we give more weights to the experts who are doing better in
terms of their total losses

In other words, for a suitable weight vector w(t), we predict

x̂t =

∑
i wi,t fi (t)∑

i wi,t
(2)

9 / 44



Learning, Games and Networks

Prediction With Experts’ Advice

Prediction Strategy

Problem Design an online strategy for selecting {x̂t} so that our cumulative loss
remains close to the best fixed expert in the hindsight.
Let L(i , t) denote the total loss of expert i up to time t − 1, i.e.,

L(i , t) =

t−1∑
τ=1

`(fi (τ), yτ ) (1)

Performance Metric: A natural metric to measure the performance of an online
algorithm π is to bound its regret Rπ(T ) up to time T defined as follows:

Rπ(T ) = max
y

(
Lπ(T )−min

i
L(i ,T )

)
A natural strategy is to take a weighted combination w(t) of experts’ prediction
at time t, where the weights are decreasing with the expert’s cumulative losses up
to time t − 1.

This ensures that we give more weights to the experts who are doing better in
terms of their total losses

In other words, for a suitable weight vector w(t), we predict

x̂t =

∑
i wi,t fi (t)∑

i wi,t
(2)

10 / 44



Learning, Games and Networks

Prediction With Experts’ Advice

Prediction Strategy

Problem Design an online strategy for selecting {x̂t} so that our cumulative loss
remains close to the best fixed expert in the hindsight.
Let L(i , t) denote the total loss of expert i up to time t − 1, i.e.,

L(i , t) =

t−1∑
τ=1

`(fi (τ), yτ ) (1)

Performance Metric: A natural metric to measure the performance of an online
algorithm π is to bound its regret Rπ(T ) up to time T defined as follows:

Rπ(T ) = max
y

(
Lπ(T )−min

i
L(i ,T )

)
A natural strategy is to take a weighted combination w(t) of experts’ prediction
at time t, where the weights are decreasing with the expert’s cumulative losses up
to time t − 1.

This ensures that we give more weights to the experts who are doing better in
terms of their total losses

In other words, for a suitable weight vector w(t), we predict

x̂t =

∑
i wi,t fi (t)∑

i wi,t
(2)

11 / 44



Learning, Games and Networks

Prediction With Experts’ Advice

Performance of EXP

Question: How to select the weights?

Strategy EXP

wi,t = exp(−ηL(i , t − 1)), (3)

for some η > 0.

[Theorem: Regret of EXP]

REXP(T ) ≤
lnN

η
+
η

T

By choosing η ≡
√
T lnN, we obtain a O(

√
T ) regret bound for the exponential

algorithm. Thus the average regret per round diminishes to zero as T →∞.
Proof involves a Lyapunov argument with the logarithm of the total weights
L(t) = ln(

∑
i wi,t) as the Lyapunov function.
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Prediction With Experts’ Advice

Lower Bounds : Can we do better?

Here is my existential proof that we cannot do better than O(
√
T ) in terms of regret,

asymptotically.

Proof: Assume that there are two experts and an environment, all of which output iid
binary sequences {f (t), y(t)}, independent of each other. Choose the loss function to
be `(x , y) = |x − y |.

Now observe:

The expected loss of each expert at any slot t is simply 1
2

, independent of y .

The expected loss of the player at each slot is 1
2

, irrespective of his output
x̂(t) ∈ {0, 1}.

Suffices to show that regret with respect to any expert (say, the first expert) is

O(
√
T ).
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Prediction With Experts’ Advice

Proof Contd.

Analysis:

P(Rπ(T ) ≥
√
T ) ≥ P(Lπ(T )− L(1,T ) ≥

√
T )

= P(
T∑
t=1

(
|Y (t)− X̂ (t)| − |Y (t)− F1(t)|

)
≥
√
T )

Define the random variable Z(t) =
(
|Y (t)− X̂ (t)| − |Y (t)− F1(t)|

)
.

Clearly, the sequence of random variables {Z(t)} are i.i.d. with zero mean and
variance = 1

2
.

Thus, we have

lim
T→∞

P(Rπ(T ) ≥
√
T ) ≥ lim

T→∞
P
( T∑

t=1

Z(t) ≥
√
T
) CLT

= 1− Φ(
√

2) ≥ 0.07

Thus, for large enough T , there is a strictly positive probability that regret is greater
than

√
T . This shows that there exists a sequence of forecasts f (t) and an adversarial

sequence yt such that no online strategy achieves regret smaller that O(
√
T ). �
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Application to Game Theory

Set Up: Two Player zero-sum game [2]

Consider a finite, two player (row and column), zero-sum game, with the payoff
matrix given by M.

The row player plays a randomized strategy P and the column player plays a
randomized strategy Q.

Loss of the row and column player is PTMQ and -PTMQ.

Assume that the game is played sequentially in the following orders:

Case 1: Row player makes the first move
Optimal strategy is given by the solution of the following problem

V1 = min
P

max
Q

PTMQ (4)

Case 2: Column player makes the first move
Optimal strategy is given by the solution of the following problem

V2 = max
Q

min
P

PTMQ, (5)

where V1 and V2 are the corresponding pay off of the row player.
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Application to Game Theory

Minimax Theorem

Intutively, for any player making move after the other player is advantageous as he
knows his opponent’s move. Hence, it is no surprise that

V2 = max
Q

min
P

PTMQ ≤ min
P

max
Q

PTMQ = V1 (6)

The startling result by Von Neumann is that the second player does not have any
advantage in expectation, if the first player plays optimally:

Theorem (Minimax Theorem)

For any payoff matrix M:

min
Q

max
P

PTMQ = max
P

min
Q

PTMQ (7)
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Application to Game Theory

EXP and Game Theory

Questions:

How to find the minimax strategy ?
Classically the minimax strategy is derived by solving an LP, which requires knowledge
of the full pay-off matrix.

What has it to do with the theory of experts’ advice?

Answers:

We will see that the EXP algorithm gives an alternative online strategy for finding
the MiniMax strategy, without requiring knowledge of the full payoff matrix M.

It also yields an alternative concise proof of the MiniMax Theorem (which is
classically proved via LP duality).
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Application to Game Theory

A Minimax Strategy for the Learner

Setting: Repeated Games

Imagine the learner to be the Row player and the Adversary to be the column
player.

Experts are the actions of the row players.

At each round the learner plays a randomized strategy Pt and the adversary plays
a randomized strategy Qt (which may depend on the current choice and the past
history).

The learner observes the losses of each action M(i ,Qt) at time t.

At time t, the learner incurs a loss M(Pt ,Qt) = PT
t MQt .

Learner’s strategy: EXP
Pt is chosen accoding to the EXP rule: probability of playing action i is proportional
to Exponential of the minus of cumulative loss incurred by the action i , i.e.,

wt+1(i) = wt(i) exp(−ηM(i ,Qt))

Pt ∝ wt
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Application to Game Theory

Performance Analysis

Invoking our general theory of EXP strategy, we readily obtain the following regret
bound. With η ←

√
T ln(N), we have

Avg. Loss =
1

T

T∑
t=1

M(Pt ,Qt) ≤ min
P

1

T

T∑
t=1

M(P,Qt) + ∆T , (8)

where ∆T = O
√

ln N
T
→ 0 as T →∞.

Corollary: Note that the above bound holds for any choice of the opponent’s strategy
Qt .
First, let Qt = Q∗t be the MinMax strategy against Pt . We have from the LHS,

Avg. Loss ≥
1

T

T∑
t=1

M(Pt ,Q∗t ) ≥ min
P

max
Q

M(P,Q) (9)

Bound the RHS by the MaxMin strategy P = P∗

Avg. Loss ≤
1

T

T∑
t=1

M(P∗,Q∗t ) + ∆T ≤ max
Q

min
P

M(P,Q) + ∆T , (10)
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Application to Game Theory

Proof Contd.

Combining the above two Eqns., we get

min
P

max
Q

M(P,Q) ≤ Avg. Loss ≤ max
Q

min
P

M(P,Q) + ∆T (11)

Letting T → 0, and combining it with the previous bound, we recover the famous
minmax theorem.

Moreover, the above proof shows that by choosing Qt = arg maxQ M(Pt ,Q) and
updating Pt according to EXP and letting T →∞, we may obtain the Nash
Equilibrium of both players as follows

P̄ =
1

T

T∑
t=1

Pt

Q̄ =
1

T

T∑
t=1

Qt
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Online Shortest Path (OSP)

Online Shortest Path

Consider the classic problem of online shortest path. Here we are given a graph
G(V ,E) with a source-destination pair s, t. At every slot t, an adversary assigns cost
c(e, t) to each edge e.
The goal is to pick an s − t path at each slot, so that the cumulative regret upto time
T remains small w.r.t. the best path.

Can frame the problem as an expert’s prediction problem, with each path acting
as an expert.

The problem with this naive approach is that there are exponentially many s − t
paths and hence experts. The algorithm will suffer an undesirable exponential
slow down.

The solution to get around this issue is the following randomized strategy : Follow
The Perturbed Leading Path (FPL).
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Online Shortest Path (OSP)

The Algorithm FPL [3]

At each time t:

1 For each edge e, pick a number pt(e) randomly from a two-sided exponential
distribution (with parameter ε).

2 Use the shortest path πt on the graph G with edge e’s weight Ct(e) + pt(e),
where Ct(e) is total cost incurred by traversing on edge e, i.e.,

Ct(e) =

t−1∑
τ=1

c(e, τ)

Theorem (Performance of FPL)

E(Cost) ≤ (1 + ε)C∗ +
O(mn log n)

ε
(12)

For completeness, we also mention that, there exists a clever way for efficiently
implementing the original EXP algorithm with exponentially many experts, if the
underlying graph is a DAG [1].
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1 For each edge e, pick a number pt(e) randomly from a two-sided exponential
distribution (with parameter ε).

2 Use the shortest path πt on the graph G with edge e’s weight Ct(e) + pt(e),
where Ct(e) is total cost incurred by traversing on edge e, i.e.,

Ct(e) =

t−1∑
τ=1

c(e, τ)

Theorem (Performance of FPL)

E(Cost) ≤ (1 + ε)C∗ +
O(mn log n)

ε
(12)

For completeness, we also mention that, there exists a clever way for efficiently
implementing the original EXP algorithm with exponentially many experts, if the
underlying graph is a DAG [1].
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Online Sabotaged Shortest Path [4]

The setting is similar to OSP, however at each slot some edges are sabotaged, and
hence, some paths are blocked.
The regret with respect to a constant path P is defined as follows

RT (P) =
∑

t:P is open

Pπt · ct − P · ct (13)

Again, the objective is to keep the regret small with respect to all paths P
simultaneously.

Baseline Algorithm : Sleeping Experts

1 Maintain an expert for each path.

2 At each slot, if an expert is awake (path open), update its weight according to
the EXP algorithm.

3 If an expert is asleep (path closed), keep its weight unchanged.

4 Select an open path with probability proportional to its weight.
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Performance

Regret bound is satisfactory:

ERT (P) ≤ K
√
T lnD, (14)

where K is the length of the longest s − t path and D is the total number of s − t
paths (which could be exponential but that does not matter as we are taking log of it).

Issues:

1 The regret bound is suboptimal (by a factor
√
K)

2 The run time could be exponential

Open Problem [4] : Can we design an efficient prediction strategy similar to FPL with
good regret guarantee ?
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