
Optimal Scheduling for Minimizing the Age-of-Information for Wireless Erasure Channels

Optimal Scheduling for Minimizing the Age-of-Information for
Wireless Erasure Channels

Abhishek Sinha

Assistant Professor
EE, IIT Madras

† Joint work with

Igor Kadota, Eytan Modiano (MIT)

Arunabh Srivastava, Krishna Jagannathan (IIT Madras)

Friday 28th June, 2019

† INFOCOM 2018 (Best Paper Award), RAWNET 2019

1 / 36



Optimal Scheduling for Minimizing the Age-of-Information for Wireless Erasure Channels

Introduction

Age Of Information (AoI)

What is AoI - A new metric to measure the freshness of information

Definition [KYG12]: The AoI h(t) for a UE is the time elapsed since the UE
received the latest packet. Mathematically,

h(t) = t − u(t),

where u(t) is the timestamp of the latest received packet.

Saw-Tooth Variation of AoI with time

The downward jumps correspond to reception of new packets by the UE.
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Introduction

Use Case I - Self-Driving Car

A Self-Driving Car uses many sensors to navigate through traffic on the road.

e.g., Waymo by Google uses the LIDAR, eight laser sensors, cameras, GPS and radar
systems

A Self-Driving Car

The controller needs to obtain the latest readings from all sensors, and cannot
ignore even one sensor for a long time

RConstraint: Due to wireless interference, can communicate with only a limited
number of sensors per slot.
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Introduction

Use Case II- Automated Surveillance

Automated intrusion detection in large areas requires a well-connected sensor
network

The central server requires live information from all sensors to detect intrusions

Necessary to communicate with all sensors to identify the intruders with high
accuracy

An Intrusion Detection System

RConstraint: Throughput constraints on the wireless links and wireless
interference constraints
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Model

System Model

A BS serves N UEs

Arrival: The BS receives one fresh packet per slot from a core network

Scheduling: The BS can transmit the latest packet to only one UE per slot

Channel: The channel between the BS and the i th UE is modelled by a erasure

channel with erasure probability 1− pi .

pi

=⇒
One fresh packet

per slot

Age hi (t)
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Problem-I

Problem Statement-I and Results

Objective: Design a UE scheduling policy to maximize the value of information.

Problem 1: Minimize the Average-AoI

Design a downlink scheduling policy which minimizes the long-term average-AoI
(Havg) of the UEs as defined below

Havg ≡ lim sup
T→∞

1

T

T∑
t=1

(
1

N

N∑
i=1

E(hi (t))

)

Our Results

1 Derivation of a universal lower-bound for Havg

2 Designing a 4-approximation policy MW

3 Extension of MW with throughput-constraint
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Problem-I

Converse

Theorem: Universal Lower Bound

For any UE scheduling policy π, we have

Hπ
avg ≥

1

2N

( N∑
i=1

1
√
pi

)2

.

Proof Outline:

The proof uses the fact that, irrespective of any policy π, a maximum of T
transmission attempts can be made in T slots.

This, along with the dynamics of age process, yields a lower-bound upon
application of the Cauchy-Schwartz inequality.

Finally, the proof concludes by using the SLLN and Fatou’s Lemma.

11 / 36



Optimal Scheduling for Minimizing the Age-of-Information for Wireless Erasure Channels

Problem-I

Converse

Theorem: Universal Lower Bound

For any UE scheduling policy π, we have

Hπ
avg ≥

1

2N

( N∑
i=1

1
√
pi

)2

.

Proof Outline:

The proof uses the fact that, irrespective of any policy π, a maximum of T
transmission attempts can be made in T slots.

This, along with the dynamics of age process, yields a lower-bound upon
application of the Cauchy-Schwartz inequality.

Finally, the proof concludes by using the SLLN and Fatou’s Lemma.

12 / 36



Optimal Scheduling for Minimizing the Age-of-Information for Wireless Erasure Channels

Problem-I

Achievability

The Max-Weight Policy (MW)

At time slot t, the MW policy schedules the user iMW(t) having the highest index
pih

2
i (t), i.e.,

iMW(t) ∈ arg max
i

pih
2
i (t).

The MW policy requires the knowledge of the channel statistics (p).

Theorem: Performance of MW

The MW policy is a 4-approximation scheduling policy for the Problem 1.

Proof Outline

The proof follows a Lyapunov-drift argument with a quadratic Lyapunov function.

We compare the drift of MW with the drift of the “best” randomized policy π∗

With our methodology, the approximation guarantee of MW is essentially limited by that
of π∗
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Problem-I

Extension: Minimizing avg-AoI with Throughput-Constraints

We consider the above problem with the constraint that the UEi has a
throughput-requirement of αi , ∀i .

Lemma (Feasibility of α)

The throughput vector α is feasible iff∑
i

αi

pi
< 1.

Proposition: Universal Lower-Bound with TPUT Constraint

The avg-AoI is lower-bounded by the value of the following program

min
1

2N

∑
i

1

βi

Subject to,

βi ≥ αi , ∀i∑
i

βi

pi
≤ 1

βi ≥ 0.
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Problem-I

Approximately-Optimal MW Policy

For a scalar parameter V > 0, define the weight

Wi (t) = pih
2
i (t) + 2Vpiq

+
i (t),

where q+
i (t) is the “debt-queue” for the UEi having the dynamics

q+
i (t + 1) =

(
q+
i (t)− µi (t)

)+

+ αi .

At time t, the MW-T policy schedules the UEi having the largest value of the
weight Wi (t), i.e.,

iMW-T ∈ arg max
i

(
pih

2
i (t) + 2Vpiq

+
i (t)

)
.

Optimality of MW-T

The MW-T policy is a 4-optimal scheduling policy in this setting for 0 < V ≤ 2.
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Problem-II

Problem Statement-II and results

Emerging applications like URLLC and Cyber Physical Systems require a more
stringent uniform control of AoI across all devices.

Problem 2: Minimize the Peak-AoI

Design a downlink scheduling policy which minimizes the long-term peak-AoI (Hmax)
of the UEs as defined below

Hmax ≡ lim sup
T→∞

1

T

T∑
t=1

E(max
i

hi (t))

Our Results

1 Derivation of an Optimal Policy - Max-Age (MA)

2 Large Deviation Optimality for MA

3 Extension of MA with throughput-constraint
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Problem-II

Optimal Policy - Max Age (MA)

Max Age Policy (MA)

At time slot t, the MA policy schedules the user iMA(t) having the highest instantaneous
age, i.e.,

iMA(t) ∈ arg max
i

hi (t).

Unlike MW, the MA policy is greedy and is oblivious to the channel statistics (p).
Upshots: Easy to implement as it requires no channel estimations.

Theorem (Optimality of MA)

The MA policy is an optimal policy for Problem 1. Moreover, the optimal long term
peak AoI is given by

H∗max =
N∑
i=1

1

pi
.
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Problem-II

Proof Outline

Problem 1 is an instance of a countable-state average-cost MDP with a finite
action space.

Very hard to solve exactly, due to infinite state-space (VI, PI do not work!).

Our proof starts by writing down the associated Bellman Equation (BE):

λ∗ + V (h) = min
i

(
piV (1, h−i + 1) + (1− pi )V (h+1)

)
+ max

i
hi (1)

Note that, (1) is a system of infinitely many non-linear equations.

We next propose the following linear candidate solution to the BE:

V (h) =
∑
j

hj

pj
, λ∗ =

∑
j

1

pj
(2)

Finally, we show that (2) satisfies the BE under MA.
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Problem-II

Stability of the Age Process

We next show that, under the MA policy, the age-process is stable.

Theorem

The Markov Chain {h(t)}t≥1 is Positive Recurrent under the action of the MA Policy.

Positive recurrence of the age-process implies

Each UE is served infinitely often w.p. 1.

The expected time between two consecutive service of a UE has a finite expected
value.

Proof Outline: The proof follows a Lyapunov-drift approach with a Linear Lyapunov
function. Details in the paper.
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Problem-II

Large Deviation Optimality of MA

A more refined performance measure of a scheduler is its large-deviation exponent I
defined below

I = − lim
k→∞

lim
t→∞

1

k
log P(max

i
hi (t) ≥ k).

R The larger the value of I , the (exponentially) smaller the probability of age exceeding a
threshold.

Theorem (MA is LD-Optimal )

The MA policy maximizes the Large-Deviation exponent and the value of the optimal
exponent is given by

I MA = max I = − log(1− pmin).

Proof Outline: The proof proceeds by deriving a converse (universal upper-bound) and
a matching lower-bound for the MA policy. Details in the paper.
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Extension

Extension: Minimizing Age with Throughput Constraints

As an extension, we consider a scenario, where UE1 is throughput-constrained and the
rest of the UEs are delay-constrained.

Problem 2: Minimize Age with TPUT Constraint

Find an optimal scheduling policy which minimizes the long-term max-age of all UEs
subject to the throughput-constraint of one UE.

By relaxing the throughput constraint, we obtain the following relaxed objective:

λ∗∗ = inf
π∈Π

lim sup
T→∞

1

T

T∑
t=1

E(max
i

hi (t) + βā1(t)),

where ā1(t) = 1(UE1 did not successfully receive a packet in slot t), and

β ≥ 0 is a scalar Lagrangian coefficient.
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Extension

Heuristic Policy - MATP

Let gi denote the expected cost when UE1 did not receive a packet successfully, i.e.,
gi = β − βp11(i = 1).

The MATP Policy

At any slot t, the MATP policy serves the user iMATP(t) having highest value of
hi (t)− gi , i.e.,

iMATP ∈ arg max
i

hi (t)− gi .

Proposition: Approximate Optimality of MATP

There exists a value function V (·), such that, under the MATP policy, we have

||V − TV ||∞ ≤ βp1,

where T (·) is the associated Bellman Operator.
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Simulations

Minimize the Peak-Age
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Problem 1: Performance of the Max-Age (MA) policy with three other Scheduling Policies for
different number of UEs.
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Simulations

Age vs Throughput Variation of MATP with the β Parameter
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Problem 2: Variation of Throughput of UE1 with the parameter β.
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Simulations

Minimize the Peak-Age with TPUT Constraint
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Problem 2: Comparative Performance of the Proposed MATP Policy with other well-known
scheduling policies.

34 / 36



Optimal Scheduling for Minimizing the Age-of-Information for Wireless Erasure Channels

Conclusion

Conclusion

We formulated the problem of minimizing the average-age and peak-age in the
single-hop setting

Derived an approximately optimal policy for the former and an optimal policy for
the latter

Also Established large-deviation optimality of MA and Positive Recurrence of the
Age process under MA.

Future work will be on deriving an exactly optimal policy for the
throughput-constrained case
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Conclusion

Thank You
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