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Abstract—We study the problem of efficiently disseminating
packets in multi-hop wireless networks. At each time slot the
network controller activates a set of non-interfering links and
forwards selected copies of packets on each activated link. A
packet is considered jointly received only when all nodes in
the network have obtained a copy of it. The maximum rate
of jointly received packets is referred to as the broadcast
capacity of the network. Existing policies achieve the broadcast
capacity by balancing traffic over a set of spanning trees, which
are difficult to maintain in a large and time-varying wireless
network. In this paper we propose a new dynamic algorithm that
achieves the broadcast capacity when the underlying network
topology is a directed acyclic graph (DAG). This algorithm is
decentralized, utilizes local queue-length information only and
does not require the use of global topological structures, such as
spanning trees. The principal methodological challenge inherent
in this problem is the absence of work-conservation principle
due to the duplication of packets, which renders usual queuing
modelling inapplicable. We overcome this difficulty by studying
relative packet deficits and imposing in-order delivery constraints
to every node in the network. Although in-order delivery, in
general, leads to degraded throughput in graphs containing
directed cycles, we show that it is throughput-optimal in DAGs
and can be exploited to simplify the design and analysis of
optimal algorithms. Our capacity characterization also leads
to a polynomial time algorithm for computing the broadcast
capacity of any wireless DAG under the primary interference
constraints. Additionally, we propose a multiclass extension of our
algorithm which can be effectively used for broadcasting in any
network with arbitrary topology. Simulation results show that
the our algorithm has superior delay performance as compared
to traditional tree-based approaches.

I. INTRODUCTION AND RELATED WORK

Broadcasting refers to the fundamental network functional-
ity of delivering data from a source node to all other nodes
in a network. For efficient broadcasting, one needs to use
appropriate packet replication and forwarding to eliminate re-
dundant transmissions. This is especially important in power-
constrained wireless networks which suffer from interference
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and packet collisions. Broadcast applications include mission-
critical military communications [1], live video streaming [2],
and data dissemination in sensor networks [3].

The design of efficient wireless broadcast algorithms faces
several challenges. Wireless channels suffer from interference,
and a broadcast policy needs to activate non-interfering links at
every time slot. Wireless network topologies undergo frequent
changes, so that packet forwarding decisions must be made
in an adaptive fashion. Existing dynamic multicast algorithms
that balance traffic over several spanning trees [4] may be
used for broadcasting, since broadcast is a special case of
multicast. These algorithms, however, are not suitable for
wireless networks because enumerating all spanning trees is
computationally prohibitive, more so when this is to be done
repeatedly as and when the topology changes with time.

In this paper, we study the fundamental problem of through-
put optimal broadcasting in wireless networks. We consider
a time-slotted system. At every slot, a scheduler decides
which non-interfering wireless links to activate and which
set of packets to forward over the activated links, so that
all nodes receive packets at a common rate. The maximum
achievable common reception rate of distinct packets over all
scheduling policies is known as the broadcast capacity of the
network. To the best of our knowledge, no capacity-achieving
broadcast policy for wireless networks is known that does
not use spanning trees. The main contribution of this paper
is to design a decentralized and provably optimal wireless
broadcast algorithms that does not use spanning trees when
the underlying network topology is restricted to a DAG. Many
wireless networks fall in this category [5], [6].

To design the algorithm, we start out with considering a
rich class of scheduling policies Π that perform arbitrary
link activations and packet forwarding. We define the broad-
cast capacity λ∗ as the maximum common rate achievable
over this policy class Π. We next enforce two constraints
that lead to a tractable set of policies without any loss
of throughput-optimality. First, we consider the subclass of
policies Πin-order ⊂ Π which delivers packets to all nodes,
in the same order they arrive at the source, i.e., in-order.
Second, we focus on the subset of policies Π∗ ⊂ Πin-order

that allows the reception of a packet by a node only if
all its incoming neighbours have received the packet. It is
intuitively apparent that the policies in the more structured
class Π∗ are easier to describe and analyze, but might not be
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throughput-optimal. We prove the surprising result that when
the underlying network topology is a directed acyclic graph
(DAG), there is a broadcast policy π∗ ∈ Π∗ that achieves the
broadcast capacity of the network. In contrast, we also find a
(non-DAG) network containing a directed cycle in which no
control policy in the space Πin-order can provably achieve the
broadcast capacity.

To design the optimal broadcast policy π∗, we first establish
a queue-like dynamics for the system-state, represented by
relative packet deficits. This is non-trivial for the broadcast
problem because explicit queueing structures are difficult to
define due to packet duplications and consequent loss of
work-conservation. We subsequently show that, the problem
of achieving the broadcast capacity in a DAG reduces to the
problem of finding a scheduling policy stabilizing the relative
packet deficits, which can be solved by utilizing Lyapunov
drift analysis techniques [7], [8].

In this paper, our main contributions are as follows:

• We define the broadcast capacity of a wireless network
and show that it can be characterized by an edge-
capacitated graph Ĝ that arises from optimizing the
time-averages of link activations. For integral-capacitated
DAGs, the broadcast capacity is determined by the min-
imum in-degree of the graph G, which is also equal to
the maximum number of edge-disjoint directed spanning
trees rooted at the source.

• We design a dynamic algorithm that utilizes local queue-
length information to achieve the broadcast capacity of
a wireless DAG network. This algorithm does not rely
on spanning trees, has small computational complexity
and is suitable for mobile wireless networks with time-
varying topology. This algorithm also yields a construc-
tive proof of a version of Edmonds’ disjoint tree-packing
theorem [9] which is generalized to wireless activations
but specialized to DAG topology.

• Based on our characterization of the broadcast capacity,
we derive a polynomial-time algorithm to compute the
broadcast capacity of any wireless DAG under the pri-
mary interference constraints.

• We propose a randomized multiclass extension of our
broadcast algorithm, which can be effectively used to do
broadcast on wireless networks with arbitrary topology.

• We demonstrate the superior delay performance of our
algorithm, as compared to the centralized tree-based algo-
rithms [4], via numerical simulations. We also explore the
efficiency/complexity trade-off of the proposed multiclass
extension through extensive numerical simulations.

Related Works: In the literature, a simple method for
wireless broadcast is to use packet flooding [10]. The flooding
approach, however, leads to redundant transmissions and col-
lisions, known as broadcast storm [11]. In the wired domain,
it has been shown that forwarding useful packets at random is
optimal for broadcast [12]; this approach, however, does not
extend to the wireless setting due to interference and the need
for scheduling appropriate activation sets [13]. Broadcasting
on wire line networks can also be carried out using network
coding [14], [15]. However, efficient link activation under

network coding remains an open problem. There are also
a number of papers on minimizing the total latency for
broadcasting a finite number of packets in a network [16],
[17], [18]. However these works do not deal with achieving
the capacity of the network, which is the focus of this paper.

The rest of the paper is organized as follows. Section
II introduces the wireless network model. In Section III,
we define the broadcast capacity of a wireless network and
provide a useful outer bound on the capacity from a cut-set
consideration. In Section IV, we propose a dynamic broadcast
algorithm that achieves the broadcast capacity in a DAG. In
section V, we propose an efficient algorithm for computing
the broadcast capacity of any wireless DAG under the pri-
mary interference constraints. Our DAG-broadcast algorithm
is extended to networks with arbitrary topology in section VI.
Illustrative simulation results are presented in Section VII.
Finally, we conclude our paper in section VIII.

II. THE WIRELESS NETWORK MODEL

We consider a time-slotted wireless network represented by
the tuple

(
G(V,E), c,S

)
, where V is the set of nodes, E is

the set of directed point-to-point links, c = (ce, e ∈ E) is
the capacity-vector of the links and S is the set of all feasible
link-activations. An element s = (se, e ∈ E) of the activation
set S is an |E|-dimensional binary vector, such that all links
e ∈ E with se = 1 can be activated simultaneously at a slot.
The structure of the activation set S depends on the underlying
interference model. For example, under the primary interfer-
ence constraint (also known as node-exclusive interference
constraint [19]), the set S consists of |E|-dimensional binary
vectors corresponding to different matchings of the underlying
graph G [20], see Fig. 1. For the case of a wire line network,
S is the set of all binary vectors since there is no interference.
In this paper we allow an arbitrary link-activation set S, thus
capturing arbitrary wireless interference models.
We note that, some wireless networks might have point-to-
multi-point links, where a transmission can be heard by all
out-neighbours. In this case, network-capacity expression and
analysis of optimal algorithms would be different. In this
paper, for simplicity, we do not consider such situations.
Let r ∈ V be the source node at which stochastic broadcast
traffic is generated (or arrives externally). The number of
packets generated at the node r at slot t is denoted by the
random variable A(t) ∈ Z+, which is i.i.d. over slots with
mean λ and bounded second moment. These packets are to
be disseminated efficiently to all other nodes in the network.

III. WIRELESS BROADCAST CAPACITY

Intuitively, the network supports a broadcast rate λ if there
exists a scheduling policy under which all network nodes
can receive distinct packets at rate λ. The broadcast capacity
is the maximally supportable broadcast rate in the network.
Formally, we consider a class Π of scheduling policies where
each policy π ∈ Π consists of a sequence of actions {πt}t≥1

executed at every slot t. Each action πt comprises of two
operations: (i) the scheduler activates a subset of links by
choosing a feasible activation vector s(t) ∈ S; (ii) each node
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Fig. 1: A wireless network and its three feasible link activations
under the primary interference constraint.

i forwards a subset of packets (possibly empty) to node j over
an activated link e = (i, j) (with se(t) = 1), subject to the
link capacity constraint. The policy class Π includes policies
that may use all past and future information, and may forward
any subset of packets over a link.

Let Rπi (t) be the number of distinct packets received by
node i ∈ V from the beginning of time up to time t,
under the action of a policy π ∈ Π. The time average
lim infT→∞Rπi (T )/T is the rate of distinct packets received
at node i.

Definition 1 (Broadcast Policy). A policy π ∈ Π is called
a “broadcast policy of rate λ” if all nodes receive distinct
packets at rate λ, i.e.,

min
i∈V

lim inf
T→∞

1

T
Rπi (T ) = λ, w. p. 1, (1)

where λ is the packet arrival rate at the source node r.

Definition 2. The broadcast capacity λ∗ of a wireless network
is the supremum of all arrival rates λ for which there exists
a broadcast policy π ∈ Π of rate λ.

A. An upper bound on broadcast capacity λ∗

We characterize the broadcast capacity λ∗ of a wireless
network by proving a useful upper bound. This upper bound is
understood as a necessary cut-set bound of an associated edge-
capacitated graph that reflects the time-averaged behaviour
of the scheduling policies in Π. We first give an intuitive
explanation of the bound, assuming that the limits involved
exist. In the proof of Theorem 1 we rigorously establish the
result without this assumption.

Fix a policy π ∈ Π. Let βπe be the fraction of time link
e ∈ E is activated under π; i.e., define the vector

βπ = (βπe , e ∈ E) = lim
T→∞

1

T

T∑
t=1

sπ(t), (2)

where sπ(t) is the chosen link-activation vector by policy π
in slot t. The average packet flow rate over a link e under the
policy π is upper bounded by the product of the link capacity
and the fraction of time the link e is activated, i.e., ceβπe .
Hence, we can define an associated edge-capacitated graph,
Ĝπ = (V,E, (ĉe)) where each link e ∈ E has capacity ĉe =
ceβ

π
e ; see Fig. 2 for an example of such an edge-capacitated

graph. Next, we provide a bound on the broadcast capacity by
maximizing the broadcast capacity on the ensemble of graphs
Ĝπ over all feasible average edge-activation vectors βπ .

Define a proper cut U of the network graph Ĝπ as a proper
subset of the node set V that contains the source node r.
Define the edge-cut EU associated U as

EU = {(i, j) ∈ E | i ∈ U, j /∈ U}. (3)

Since U ⊂ V , there exists a node n ∈ V \ U . Consider the
throughput (rate of packet reception) of node n under policy
π. The max-flow min-cut theorem shows that the throughput
of node n cannot exceed the total link capacity

∑
e∈EU

ce β
π
e

across the cut U . This cut-set bound is valid even when we
consider the general flow of information in the network (see
Theorem 15.10.1 of [21]). Hence the cut-set bound holds even
when we allow network coding operations. By definition of
achievable broadcast rate λπ , we have λπ ≤

∑
e∈EU

ce β
π
e .

This inequality holds for all proper cuts U and we have

λπ ≤ min
U : a proper cut

∑
e∈EU

ce β
π
e . (4)

Equation (4) holds for any policy π ∈ Π. Thus, the broadcast
capacity λ∗ of the wireless network satisfies

λ∗ = sup
π∈Π

λπ ≤ sup
π∈Π

min
U : a proper cut

∑
e∈EU

ce β
π
e

≤ max
β∈conv(S)

min
U : a proper cut

∑
e∈EU

ce βe,

where the last inequality holds because the vector βπ lies in
the convex hull of the activation set S; Refer to Eqn. (2). Our
first theorem formalizes the above intuitive characterization of
the broadcast capacity λ∗ of a wireless network.

Theorem 1. The broadcast capacity λ∗ of a wireless network
G(V,E, c) with activation set S is upper bounded as follows:

λ∗ ≤ max
β∈conv(S)

(
min

U : a proper cut

∑
e∈EU

ce βe

)
. (5)

Proof: See Appendix A.

B. Constrained Policy-Space: In-order packet delivery

Studying the performance of any arbitrary broadcast policy
π ∈ Π is analytically formidable because packets are repli-
cated across the network and may be received out of order.
To avoid unnecessary re-transmissions, each node must keep
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Fig. 2: The edge-capacitated graph Ĝπ for the wireless network
with unit link capacities in Fig. 1 and under the time-average vector
βπ = (1/2, 1/4, 1/4). The link weights are the capacities ceβπe . The
minimum proper cut in this graph has value 1/2 (when U = {r, a, c}
or {r, b, c}). An upper bound on the broadcast capacity is obtained
by maximizing this value over all vectors βπ ∈ conv (S).

track of the identity of the received set of packets, which
complicates the system state; because instead of the number
of packets received (as in classical back-pressure algorithm
[7]), the system state is properly described here by the identity
of the subset of packets received at each of the nodes.

To simplify the state, we focus on the subset of policies
Πin-order ⊂ Π that enforce the following constraint. It will be
shown subsequently that, this restriction can be made without
loss of throughput-optimality in a DAG.
Index the packets serially {1, 2, . . .} according to their order
of arrival at the source.

Constraint 1 (In-order packet delivery Πin-order). In this
policy-space, a node is allowed to receive a packet p at slot t
only if all previous packets {1, 2, . . . , p−1} have been received
by that node by slot t.

In-order packet delivery is practically useful in live media
streaming applications [2] where buffering out-of-order pack-
ets incurs increased delay and degrades the playback quality.
As shown below, Constraint 1 greatly simplifies the state space
representation of the system.
Let Ri(t) be the number of distinct packets received by node
i by time t. For policies in Πin-order, the set of received packets
by time t at node i is {1, . . . , Ri(t)}. Therefore, the network
state in slot t is given by the vector R(t) =

(
Ri(t), i ∈ V

)
.

In section IV we show the existence of a throughput-optimal
broadcast policy in the space Πin-order when the underlying
topology is a DAG. On the other hand, the following comple-
mentary result, Lemma (1), says that there exists a non-DAG
network in which any broadcast policy in the space Πin-order

is not throughput optimal. This implies that the policy-space
Πin-order can not, in general, be utilized beyond DAGs while
preserving throughput optimality.

Lemma 1. Let λ∗in−order be the broadcast capacity of the
policy subclass Πin−order ⊂ Π that enforces in-order packet
delivery. There exists a network topology containing a directed
cycle such that λ∗in−order < λ∗.

Proof: See Appendix B.
We will return to the problem of broadcasting in networks

with arbitrary topology in Section VI.

C. Achieving the broadcast capacity in a DAG
At this point we concentrate our attention to Directed

Acyclic Graphs (DAGs). Graphs in this class are appealing for
our analysis because they possess the well-known topological
ordering of the nodes [20]. For DAGs, the upper bound (5)
on the broadcast capacity λ∗ in Theorem 1 will be relaxed
further. For each receiver node v 6= r, consider the proper cut
Uv that separates the node v from the rest of the network. i.e.,

Uv = V \ {v}. (6)

Using these collection of cuts {Uv, v 6= r}, we obtain a
relaxed upper bound λDAG on the broadcast capacity λ∗ as:

λDAG , max
β∈conv(S)

min
{Uv,v 6=r}

∑
e∈EUv

ce βe (7)

≥ max
β∈conv(S)

min
U : a proper cut

∑
e∈EU

ce βe ≥ λ∗,

where the first inequality uses the subset relation {Uv, v 6=
r} ⊆ {U : a proper cut} and the second inequality follows
from Theorem 1. In Section IV, we will propose a dynamic
policy that belongs to the policy class Πin-order and achieves
the broadcast rate λDAG. Combining this result with (7), we
establish that the broadcast capacity of a DAG is given by

λ∗ = λDAG = max
β∈conv(S)

min
{Uv,v 6=r}

∑
e∈EUv

ce βe, (8)

= max
β∈conv(S)

min
U : a proper cut

∑
e∈EU

ce βe.

The capacity is achieved by a broadcast policy that uses in-
order packet delivery. In other words, we show that imposing
the in-order packet delivery constraint does not reduce the
broadcast capacity when the topology is a DAG. As a corol-
lary, we also retrieve the result that network-coding operations
do not increase the broadcast-capacity in our setting.
From a computational point of view, the equality in Eqn. (8) is
attractive, because it implies that for computing the broadcast
capacity of any wireless DAG, it is enough to consider only
those cuts that separate a single (non-source) node from the
rest of the network. Note that, there are only |V | − 1 of such
cuts, in contrast with the total number of cuts in Eqn. (5),
which is exponential in the size of the network. This fact
will be exploited in section V to develop a strongly poly-time
algorithm for computing the broadcast capacity of any wireless
DAG network under the primary interference constraints.

IV. DAG BROADCAST ALGORITHM

In this section we design a throughput-optimal broadcast
policy for wireless DAGs. We start by imposing an additional
constraint on packet-forwarding that leads to a new subclass of
policies Π∗ ⊆ Πin-order. As we will see, policies in Π∗ can be
described in terms of relative packet deficits which constitute
a simple dynamics. We analyze the dynamics of the minimum
relative packet deficits, which behaves like virtual queues. We
design a dynamic control policy π∗ ∈ Π∗ that stabilizes the
virtual queues. The main result of this section is to show that
this control policy achieves the broadcast capacity whenever
the network topology is a DAG.
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A. System-state by means of packet deficits

We showed earlier in Section III-B that, constrained to the
policy-space Πin-order, the system-state is completely repre-
sented by the vector R(t). However this constrained policy-
class alone is not sufficient to obtain a one-step dynamics
of the system, which is an essential prerequisite to design a
stabilizing control policy. As a result, we restrict our attention
to a sub-class of policies in Πin-order, defined as follows.

A node i is called an in-neighbor of node j if there exists
a directed link (i, j) ∈ E in the underlying graph G. The set
of all in-neighbours of a node j is denoted by δin(j). The
out-neighbours of a node is defined similarly.

Constraint 2 (Policy-space Π∗). A packet p is eligible for
transmission to node j at a slot t, only if all the in-neighbours
of j have received packet p in some previous slot.

We denote this new policy-class by Π∗ ⊆ Πin-order. It will be
shown subsequently that this restriction can be done without
loss of throughput-optimality. Fig. 3 shows the relationship
among different policy classes1.
Following two properties of the system-state R(t) under the
action of a policy π ∈ Π∗ will be useful.

Lemma 2. Under any policy π ∈ Π∗, we have:
(1) Rj(t) ≤ mini∈δin(j)Ri(t)
(2) The indices of packets p that are eligible to be transmit-

ted to the node j at slot t are given by{
p | Rj(t) + 1 ≤ p ≤ min

i∈δin(j)
Ri(t)

}
.

The proof of the above lemma follows directly from the
definition of the policy-space Π∗.

Π Πin-order Π∗
π∗
q

Π: all policies that perform
arbitrary link activations and routing

Πin-order: policies that enforce
in-order packet delivery

Π∗: policies that allow reception
only if all in-neighbors have
received the specific packet

Fig. 3: Containment relationships among different policy classes.

Define the packet-deficit Qij(t) over the link (i, j) ∈ E to
be Qij(t)

def
= Ri(t) − Rj(t). Under a policy in Π∗, Qij(t)

is always non-negative because, by part (1) of Lemma 2, we
have

Qij(t) = Ri(t)−Rj(t) ≥ min
k∈δin(j)

Rk(t)−Rj(t) ≥ 0.

The variable Qij(t) denotes the number of packets received by
node i but not by node j upto time t. Intuitively, if all packet-
deficits {Qij(t)} are bounded asymptotically, the total number
of packets received by any node is not lagging far from the
total number of packets generated at the source; hence, the

1We note that, if the network contains a directed cycle, then a deadlock
might occur under a policy in Π∗ and may yield zero broadcast throughput.
However, this problem does not arise when the underlying topology is a DAG.

broadcast throughput will be equal to the packet generation
rate.

To analyze the system dynamics under a policy in Π∗, it is
useful to define the minimum packet deficit at node j 6= r by

Xj(t)
def
= min

i∈δin(j)
Qij(t). (9)

From part (2) of Lemma 2, Xj(t) is the maximum number of
packets that node j is allowed to receive from its in-neighbors
at slot t under Π∗.
As an example, Fig. 4 shows that the packet deficits at node
j, relative to its in-neighbors a, b, and c, are Qaj(t) = 8,
Qbj(t) = 5, and Qcj(t) = 4 respectively. Thus Xj(t) = 4 and
node j is only allowed to receive four packets in slot t due to
Constraint 2.
We can rewrite Xj(t) as

Xj(t) = Qi∗t j(t), where i∗t = arg min
i∈δin(j)

Qij(t), (10)

i.e., the node i∗t is the in-neighbor of node j from which node
j has the smallest packet deficit in slot t; ties are broken
arbitrarily in deciding i∗t .2 Our optimal broadcast policy will be
described in terms of the minimum packet deficits {Xj(t)}j 6=r.

a b jc

Ra(t) = 18

Rb(t) = 15 Rc(t) = 14

Rj(t) = 10

Fig. 4: Under a policy π ∈ Π∗, the set of packets available
for transmission to node j in slot t is {11, 12, 13, 14}, which
are present at all in-neighbors of the node j. The in-neighbor of
j having the smallest packet deficit is i∗t = c, and Xj(t) =
min{Qaj(t), Qbj(t), Qcj(t)} = 4.

B. The dynamics of the state variables {Xj(t)}
We now analyze the dynamics of the state variables

Xj(t) = Qi∗t j(t) = Ri∗t (t)−Rj(t) (11)

under a policy π ∈ Π∗. Define the service rate vector µ(t) =
(µij(t))(i,j)∈E by

µij(t) =

{
cij if (i, j) ∈ E and the link (i, j) is activated,
0 otherwise.

Equivalently, we may write µij(t) = cijsij(t), where s(t) is
the link-activation vector s(t), chosen for slot t. At node j, the
increase in the value of number of packets received, i.e., Rj(t),
depends on the identity of the received packets; in particular
for efficiency, the node j must receive distinct packets. Next,
we clarify which set of packets are allowed to be received by
node j at time t.

The number of available packets for reception at node j is
min{Xj(t),

∑
k∈V µkj(t)}. This is because: (i) Xj(t) is the

2We note that the minimizer i∗t is a function of the node j and the time
slot t and should be properly denoted as i∗t (j); we slightly abuse the notation
by dropping the symbol j from i∗t throughout to simplify notations.



6

maximum number of packets node j can receive from its in-
neighbours subject to the Constraint 2; (ii)

∑
k∈V µkj(t) is

the total incoming transmission rate at node j under a given
link-activation decision. To correctly derive the dynamics of
Rj(t), we consider the following efficiency requirement on
policies in Π∗:

Constraint 3 (Efficient forwarding). Given a service rate
vector µ(t), node j pulls from the activated incoming links
the following subset of packets (denoted by their indices){

p | Rj(t) + 1 ≤ p ≤ Rj(t) + min{Xj(t),
∑
k∈V

µkj(t)}
}
,

(12)
The specific subset of packets that are pulled over each
incoming link are disjoint but otherwise arbitrary.3

Constraint 3 requires that scheduling policies must avoid
forwarding the same packet to a node over two different
incoming links. Under certain interference models such as the
primary interference model, at most one incoming link per
node is activated in a slot and Constraint 3 is redundant.

In Eqn. (11), the packet deficit Qi∗t j(t) increases with Ri∗t (t)
and decreases with Rj(t), where Ri∗t (t) and Rj(t) are both
non-decreasing. Hence, we can upper-bound the increase of
Qi∗t j(t) by the total service rate of the activated incoming
links at node i∗t , i.e.,

∑
m∈V µmi∗t (t) . Also, we can express

the decrement of Qi∗t j(t) by the exact number of distinct
packets received by node j from its in-neighbours, given by
min{Xj(t),

∑
k∈V µkj(t)} by Constraint 3. Consequently, the

one-slot evolution of the variable Qi∗t j(t) is given by4

Qi∗t j(t+ 1) ≤
(
Qi∗t j(t)−

∑
k∈V

µkj(t)
)+

+
∑
m∈V

µmi∗t (t)

=
(
Xj(t)−

∑
k∈V

µkj(t)
)+

+
∑
m∈V

µmi∗t (t),

(13)

where (x)+ = max(x, 0) and we recall that Xj(t) = Qi∗t j(t).
It follows that Xj(t) evolves over slot t according to

Xj(t+ 1)
(a)
= min

i∈δin(j)
Qij(t+ 1)

(b)

≤ Qi∗t j(t+ 1)

(c)

≤
(
Xj(t)−

∑
k∈V

µkj(t)
)+

+
∑
m∈V

µmi∗t (t), (14)

where the equality (a) follows the definition of Xj(t), inequal-
ity (b) follows because node i∗t ∈ δin(j) and inequality (c)
follows from Eqn. (13). In Eqn. (14), if i∗t = r, the notation is
slightly abused to define

∑
m∈V µmr(t) = A(t) for the source

node r, where A(t) is the number of exogenous packet arrival
at source at slot t.

C. A Throughput-optimal Broadcast Policy

Like the Back-Pressure algorithm [7], our broadcast policy
is designed to keep the deficit process {X(t)}t≥0 stochasti-

3Due to Constraints 1 and 2, the packets in (12) have been received by all
in-neighbors of node j.

4We emphasize that for a given node j, the node i∗t , as defined in (10),
depends on time t and may be different from the node i∗t+1.

cally stable. For this, we regard the variables Xj(t) as virtual
queues that follow the dynamics (14). By performing drift
analysis on the virtual queues Xj(t), we propose the following
max-weight-type broadcast policy π∗, described in Algorithm
1. However, the way the weights are computed in π∗ (16), is
very much different from the Back-Pressure algorithm. Also
the fundamental feature of packet duplications is essentially
new here. The policy π∗ belongs to the space Π∗ and enforces
the constraints 1, 2, and 3. We will show that this policy
achieves the broadcast capacity λ∗ of a wireless network over
the general policy class Π when the underlying topology is a
DAG. The steps of the algorithm are illustrated in Fig. 5.

Distributed Implementation: As evident from the de-
scription of Algorithm 1, computation of the weight-vectors
W (t) and packet forwarding decisions are made locally by
individual nodes. The only network-wide operation that the
algorithm needs to perform is step 3, where it needs to select
the maximum-weighted feasible activation set. The problem
of scheduling the Max-weight activation set in a distributed
fashion has been studied extensively in the literature [22] [23].
In particular, the work of Bui et. al. [23] designs a distributed
algorithm for solving the Max-weight scheduling problem with
constant overhead in the primary interference setting.

Algorithm 1 Optimal Broadcast Policy π∗ for a Wireless
DAG:
At each slot t, the network-controller observes the state-
variables {Rj(t), j ∈ V } and executes the following ac-
tions

1: For each link (i, j) ∈ E, compute the deficit Qij(t) =
Ri(t) − Rj(t) and the set of nodes Kj(t) ⊂ δout(j) for
which node j is their deficit minimizer, i.e.,

Kj(t)←
{
k ∈ V | j = arg min

m∈δin(k)
Qmk(t)

}
. (15)

The ties are broken arbitrarily (e.g., in favor of the highest
indexed node) in finding the arg min(·) in Eqn.(15).

2: Compute Xj(t) = mini∈δin(j)Qij(t) for j 6= r and assign
to link (i, j) the weight

Wij(t)←
(
Xj(t)−

∑
k∈Kj(t)

Xk(t)
)
. (16)

3: In slot t, choose the link-activation vector s(t) =
(se(t), e ∈ E) such that

s(t) ∈ arg max
s∈S

∑
e∈E

ceseWe(t). (17)

4: Every node j 6= r uses activated incoming
links to pull packets {Rj(t) + 1, . . . , Rj(t) +
min{

∑
i cijsij(t), Xj(t)}} from its in-neighbors

according to the Constraint 3.
5: The vector (Rj(t), j ∈ V ) is updated as follows:

Rj(t+1)←

{
Rj(t) +A(t), j = r,

Rj(t) + min{
∑
i cijsij(t), Xj(t)}, j 6= r,

The next theorem demonstrates the optimality of the broad-
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c

Step 2

Xa(t) = 7

Xb(t) = 0

Xc(t) = 1

Wra(t) = (Xa(t)−Xb(t)−Xc(t))+ = 6

Wrb(t) = (Xb(t))+ = 0

Wrc(t) = (Xc(t))+ = 1

Wab(t) = (Xb(t))+ = 0

Wac(t) = (Xc(t))+ = 1

Wbc(t) = (Xc(t))+ = 1
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c

Step 3

Ra(t) = 3

Rc(t) = 2

s1: Wra(t) +Wbc(t) = 7

s2: Wrb(t) +Wac(t) = 1

s3: Wrc(t) +Wab(t) = 1

Choose the link-activation vector s1

Forward the next packet #4 over (r, a)

Forward the next packet #3 over (b, c)

#4

#3

r

a b

c

Step 4

Rr(t+ 1) = 11

Ra(t+ 1) = 4
Rb(t+ 1) = 3

Rc(t+ 1) = 3

One packet arrives at the source

Fig. 5: Running the optimal broadcast policy π∗ in slot t in a wireless
network with unit-capacity links and under the primary interference
constraint. Step 1: computing the deficits Qij(t) and Kj(t); a tie is
broken in choosing node a as the in-neighbor deficit minimizer for
node c, hence c ∈ Ka(t); node b is also a deficit minimizer for node
c. Step 2: computing Xj(t) for j 6= r and Wij(t). Step 3: finding the
link activation vector that is a maximizer in (17) and forwarding the
next in-order packets over the activated links. Step 4: a new packet
arrives at the source node r and the values of {Rr(t + 1), Ra(t +
1), Rb(t+ 1), Rc(t+ 1)} are updated.

cast policy π∗ described above.

Theorem 2. If the underlying topology of G is a DAG, then for
any exogenous packet arrival rate λ < λDAG, the broadcast
policy π∗ yields

min
i∈V

lim inf
T→∞

Rπ
∗

i (T )

T
= λ, w.p. 1,

where λDAG is the upper bound on the broadcast capacity
λ∗ in the general policy class Π, as given by Eqn. (7).
Consequently, the broadcast policy π∗ achieves the broadcast
capacity λ∗ in any wireless Directed Acyclic Graph.

Proof: See Appendix C.

D. Number of disjoint spanning trees in a DAG

As a corollary, Theorem 2 yields an interesting combinato-
rial result that relates the number of disjoint spanning trees in
a DAG to the in-degrees of its nodes.

Lemma 3. Consider a directed acyclic graph G = (V,E) that
is rooted at a node r, has unit-capacity links, and possibly
contains parallel edges. The maximum number k∗ of edge-
disjoint spanning trees in G is given by

k∗ = min
v∈V \{r}

din(v),

where din(v) denotes the in-degree of the node v.

Proof: See Appendix D.

V. AN EFFICIENT ALGORITHM FOR COMPUTING THE
BROADCAST CAPACITY OF A DAG

In this section we exploit Eqn. (8) and develop an LP to
compute the broadcast capacity of any wireless DAG network
under the primary interference constraints. Although this LP
has exponentially many constraints, using a well-known sep-
aration oracle, it can be solved in strongly polynomial time
utilizing the ellipsoid algorithm [24].
Under the primary interference constraint, the set of feasible
activations of a graph are its matchings [20]. For a subset of
edges E′ ⊂ E, let χE

′ ∈ {0, 1}|E| where χE
′
(e) = 1 if

e ∈ E′ and is zero otherwise. Let us define

Pmatching(G) = convexhull({χM |M is a matching in G}) (18)

We have the following classical result from Edmonds [25].

Theorem 3. The set Pmatching(G) is characterized by the set
of all β ∈ R|E| such that :

βe ≥ 0 ∀e ∈ E (19)∑
e∈δin(v)∪δout(v)

βe ≤ 1 ∀v ∈ V

∑
e∈E[U ]

βe ≤ |U | − 1

2
; U ⊂ V, |U | odd,

where E[U ] is the set of edges (ignoring their directions) with
both end points in the subset U ⊂ V .

Hence following Eqn. (8), the broadcast capacity of a DAG
can be obtained by the following LP :
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maxλ (20)

Subject to,

λ ≤
∑

e∈δin(v)

ceβe ∀v ∈ V \ {r} (21)

β ∈ Pmatching(G) (22)

From the equivalence of optimization and separation (via
the ellipsoid method), it follows that the above LP is poly-
time solvable if there exists an efficient separator oracle for the
constraints (21), (22). Since there are only linearly many con-
straints (|V |−1, to be precise) in (21), the above requirement
reduces to an efficient separator for the matching polytope
(22). We refer to a classic result from the combinatorial-
optimization literature which shows the existence of such an
efficient separator for the matching polytope.

Theorem 4. [25] There exists a strongly poly-time algorithm
that, given G = (V,E) and β : E → R|E|, determines if β
is feasible for (19) or outputs an inequality from (19) that is
violated by β.

This directly leads to the following theorem.

Theorem 5. There exists a strongly poly-time algorithm to
compute the broadcast capacity of any wireless DAG under
the primary interference constraints.

The following corollary implies that, although there are
exponentially many matchings in a DAG, to achieve the broad-
cast capacity, randomly activating (with appropriate probabil-
ities) only |E|+ 1 matchings suffice.

Corollary 1. The optimal broadcast capacity λ∗ in a wireless
DAG, under the primary interference constraints, can be
achieved by randomly activating (with positive probability) at
most |E|+ 1 matchings.

Proof: Let (λ∗,β∗) be an optimal solution of the
LP (20). Hence we have β∗ ∈ Pmatching(G) ≡
convexhull({χM |M is a matching in G}). Since the poly-
tope Pmatching(G) is a subset of R|E|, by Carathéodory’s
theorem [26], the vector β∗ can be expressed as a convex com-
bination of at most |E|+1 vertices of the polytope Pmatching(G),
which are matchings of the graph G. This concludes the proof.

VI. BROADCASTING ON NETWORKS WITH ARBITRARY
TOPOLOGY: MULTICLASS ALGORITHM

In this section we extend the above broadcast policy for
DAGs to arbitrary networks, which may possibly contain
directed cycles. From the negative result of Lemma 1, we
know that any policy ensuring in-order packet delivery at
every node, cannot achieve the broadcast capacity in arbitrary
networks in general. To get around this difficulty, we introduce
the notion of broadcasting using multiple classes K of packets.
The idea is as follows: each class k ∈ K has a one-to-one

correspondence with a given permutation ≺k of the nodes; for
an edge (a, b) ∈ E if the node a appears before the node b in
the permutation ≺k (we denote this condition by a ≺k b), then
the edge (a, b) is included in the class k, otherwise the edge
(a, b) ignored by the class k. The set of all edges included in
the class k is denoted by Ek ⊂ E. It is clear that each class k
corresponds to a unique embedded DAG topology Gk(V,Ek),
which is a subgraph of the underlying graph G(V,E). Different
classes correspond to different permutations of nodes.
An incoming packet at the source node is admitted to some
class k ∈ K, according to some admission-policy. All packets
admitted in a given class k ∈ K are broadcasted while
maintaining the in-order delivery restriction within the class k,
however there is no such inter-class constraint for delivering
packets from different classes. Hence the resulting multi-class
policy does not belong to the space Π∗ but belongs to the
general policy-space Π. This new multi-class policy keeps
the best from both worlds: (a) its state-space complexity is
Θ(|K||V |), where for each class we have the same state-
representation as in π∗ and (b) by relaxing the inter-class in-
order delivery constraint, it has the potential to achieve the full
broadcast capacity of the underlying graph with sufficiently
many classes.
Hence the broadcasting problem reduces to construction of
multiple classes (equivalently, permutations of the vertices
V ) in G such that they cover the graph efficiently, from a
broadcast-capacity point of view. In Algorithm-2, we choose
the permutations uniformly at random with the condition
that the source r always appears at the first position of the
permutation.

Theorem 6. The multiclass broadcast Algorithm-2 with K
classes supports a broadcast rate of

λK = max∑
k β

k∈conv(S)

K∑
k=1

min
j 6=r

∑
i

cijβ
k
ij , (26)

where we use the convention that βkij = 0 if (i, j) /∈ E(k).

The right hand side of Eqn. (26) can be understood as
follows. Consider a feasible stationary activation policy πSTAT

which activates class k on the edge (i, j) βkij fraction of
time. Since, by construction, each of the class follows a
DAG, lemma (3) implies that the resulting time-averaged graph
has a broadcast capacity of λk = minj

∑
i cijβ

k
ij for the

class k. Thus the total broadcast rate achievable by πSTAT is
simply λK =

∑K
k=1 λ

k =
∑
k minj

∑
i cijβ

k
ij . Given these

K classes, following the same line of argument as in (20),
we can develop a similar LP to compute the broadcast-rate
achievable (26) by these K classes by maximizing over all
feasible {βk}K1 , in strongly poly-time.

The proof of Theorem (6) follows along the exact same
line of argument as in Theorem (2), where we now work with
the following Lyapunov function L̂(Q(t)), which takes into
account all K classes:

L̂(Q(t)) =

K∑
k=1

∑
j 6=r

(Xk
j (t))2 (27)
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Algorithm 2 Multiclass Broadcast Algorithm for General
Topology

Require: Graph G(V,E), total number of classes K
1: Generate K permutations {≺i}Ki=1 of the nodes V uni-

formly at random (with the source {r} at the first po-
sition) and obtain the induced DAGs Gk(V,Ek), where
e = (a, b) ∈ Ek iff a ≺k b.

2: For each permutation ≺k, maintain a class k and the
packet-counter variables {R(k)

i } at every node i =
1, 2, . . . , |V |.

3: Each class observes intra-class packet forwarding con-
straints (1), (2) and (3) described in sections III and IV.

4: Define the state variables {Qk(t),Xk(t)} and compute
the weights {W k(t)}, for each class k = 1, 2, . . . ,K
exactly as in Eqn. (16), where each class k considers the
edges Ek only for Eqns. (15) and (16).

5: An incoming packet to source r at time t joins the class
k corresponding to

arg min
k∈K

∑
j∈Kk

r (t)

Xk
j (t) (23)

6: The overall weight for an edge e (taken across all the
classes) is computed as

We(t) = max
k:e∈Ek

W k
e (t) (24)

7: Activate the edges corresponding to the max-weight acti-
vation, i.e.,

s(t) ∈ arg max
s∈S

∑
e∈E

ceseWe(t). (25)

8: For each activated edge e ∈ s(t), forward packets corre-
sponding to a class achieving the maximum in Eqn. (24).

We then compare the drift of multiclass broadcast algorithm 2
with the stationary randomized policy πSTAT above to show
that the Multiclass broadcast algorithm is stable under all
arrival rates below λ. The details are omitted for brevity.
Since the broadcast-rate λK achievable by a collection of K
embedded DAGs in a graph G is always upper-bounded by
the actual broadcast capacity λ∗ of G, we have the following
interesting combinatorial result as a corollary of Theorem (6)

Corollary 2. Consider a wire line network, represented by
the graph G(V,E). For a given integer K ≥ 1, consider
K arbitrary classes (i.e., permutations of vertices) as in
Theorem (6), with {Ek}Kk=1 being their corresponding edge-
sets. Then, for any set of non-negative vectors {βk}Kk=1

with
∑
k β

k
ij ≤ 1,∀(i, j), the following lower-bound for the

broadcast capacity λ∗ holds:

λ∗ ≥
K∑
k=1

min
j 6=r

∑
i

cijβ
k
ij (28)

where we use the convention that βkij = 0 if (i, j) /∈ Ek.

The above corollary may be contrasted with Eqn. (7), which

provides an upper bound to the broadcast capacity λ∗. We
also note that, the lower-bound in Eqn. (28) is tight when the
classes are chosen corresponding to the maximum number of
edge-disjoint spanning trees, obtained from Edmonds’ Theo-
rem [9].

VII. SIMULATION RESULTS

We present a number of simulation results concerning the
delay performance of the optimal broadcast policy π∗ in
wireless DAG networks with different topologies. For sim-
plicity, we assume primary interference constraints for wireless
networks throughout this section. Delay for a packet is defined
as the number of slots required for it to reach all nodes in the
network, after its arrival to the source r.

Diamond topology

Consider a 4-node wireless network as shown Fig. 6 (a).
Link capacities are indicated alongside the links. The broadcast
capacity of the network is upper bounded by the total capacity
of incoming links to node c, which is 1. This is because
at most one of its unit-capacity incoming links to node c
may be activated at any slot, under the primary interference
constraint. To determine the broadcast-capacity of the network,
consider three spanning trees {T1, T2, T3} rooted at the source
node r, as shown in Fig. 6 (b),(c),(d). By finding an optimal
time-sharing of all feasible link-activations over a subset of
spanning trees using linear programming and using Eqn. (26),
we can show that the broadcast-rate achievable using the tree
T1 only is 3/4, using the trees {T1, T2} only is 6/7, and using
the trees {T1, T2, T3} together is 1. Thus, the upper-bound is
achieved and the broadcast capacity of the network is λ∗ = 1.

We compare the performance of our throughput-optimal
broadcast policy π∗ with the tree-based policy πtree proposed
in [4]. While the policy πtree is originally proposed to transmit
multicast traffic in a wired network by balancing traffic over
multiple trees, we generalize their policy πtree for broadcasting
packets over spanning trees in the wireless setting. Fig. 5(a)
shows a comparison of the average delay performance under
the policy π∗ and the tree-based policy πtree over different
subset of trees. The simulation duration is 105 slots. We
observe that the policy π∗ achieves the broadcast capacity and,
in general, has better delay performance than the tree-based
scheme in the high traffic regime.

Mesh topology

Since the throughput-optimal broadcast policy π∗ does not
rely on limited number of tree structures, it has the potential to
exploit all degrees of freedom in the network. Such freedom
leads to better delay performance as compared to the tree-
based broadcast policies [4]. To illustrate this effect, consider
the 10-node DAG network in Fig. 8 (a). For every pair of
node {i, j}, 1 ≤ i < j ≤ 10, the network has a directed
link from node i to j with capacity (10 − i). By induction,
the number of spanning trees rooted at the source node 1
can be calculated to be 9! ≈ 3.6 × 105. Among them, we
choose five arbitrary spanning trees {Ti, 1 ≤ i ≤ 5}, shown in
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Fig. 6: A wireless DAG network and its three embedded spanning
trees.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Optimal Algorithm (C = 1)
T1, T2, T3 (C = 1)
T1, T2 (C = 6/7)
T1 (C = 3/4)

Fig. 7: Average delay performance of the optimal broadcast policy
π∗ and the tree-based policy πtree that balances traffic over different
subsets of spanning trees.

Fig. 8 (b),(c),(d),(e),(f), over which the tree-based algorithm
πtree is simulated. Table I demonstrates the superior delay
performance of our throughput-optimal broadcast policy π∗,
as compared to that of the tree-based algorithm πtree. The
table also shows that a tree-based algorithm that does not use
enough number of trees might result in degraded broadcast
throughput.

Multiclass Simulation for Arbitrary Topology

To simulate the multiclass broadcast algorithm of section
VI, we randomly generate an ensemble of 500 wire line
networks (not necessarily DAGs), each consisting of N = 10
nodes and unit capacity links. By solving the LP correspond-
ing to Eqn. (26), we compute the average fraction of the
total broadcast capacity achievable using K randomly chosen
classes by the Multiclass Algorithm 2 of section VI. The result
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Fig. 8: The 10-node wireless DAG network and a subset of spanning
trees.
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Fig. 9: Fraction of optimal broadcast rate λ

λ∗ achievable by the
multiclass broadcast algorithm with randomly chosen K classes for
randomly generated wired networks with N = 10 nodes.

is plotted in Figure 9. It follows that a sizeable fraction of
the optimal capacity may be achieved by using a moderately
many classes. However, it also shows that the required number
of classes for achieving a certain fraction of the capacity
increases as the broadcast capacity of the network increases.
This is due to the fact that increased broadcast capacity of a
network would warrant an increased number of DAGs to cover
it efficiently.
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Tree-based policy πtree over the spanning trees Broadcast
λ T1 T1 ∼ T2 T1 ∼ T3 T1 ∼ T4 T1 ∼ T5 policy π∗

0.5 12.90 12.72 13.53 16.14 16.2 11.90
0.9 1.3× 104 176.65 106.67 34.33 28.31 12.93
1.9 3.31× 104 1.12× 104 4.92× 103 171.56 95.76 14.67
2.3 3.63× 104 1.89× 104 1.40× 104 1.76× 103 143.68 17.35
2.7 3.87× 104 2.45× 104 2.03× 104 1.1× 104 1551.3 20.08
3.1 4.03× 104 2.86× 104 2.51× 104 1.78× 104 9788.1 50.39

TABLE I: Average delay performance of the tree-based policy πtree over different subsets of spanning trees and the broadcast policy π∗.

VIII. CONCLUSION

In this paper we study the problem of broadcasting in a
wireless network under general interference constraints. When
the underlying network topology is a DAG, we propose a
dynamic algorithm that achieves the broadcast capacity of
the network. Our novel algorithm, based on packet deficits
and the in-order packet delivery constraint, is promising for
application to other systems with packet duplications, such as
multicasting and caching systems. We also propose a heuristic
extension of our DAG broadcast algorithm to networks with ar-
bitrary topology. Future work would involve detailed study of
throughput-optimal broadcasting in arbitrary networks, where
optimal policies must be sought in the space Π \Πin-order.
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APPENDIX

A. Proof of Theorem 1

Fix an ε > 0. Consider a broadcast policy π ∈ Π that
achieves a broadcast rate of at least λ∗ − ε, as defined in (1);
this policy π exists by the definition of the broadcast capacity
λ∗ in Definition 2. Consider any proper cut U of the network
G. By definition of a proper-cut, there exists a node i /∈ U . Let
sπ(t) = (sπe (t), e ∈ E) be the link-activation vector chosen
by policy π in slot t. The maximum number of packets that
can be transmitted across the cut U by any policy in slot
t is at most

∑
e∈EU

ces
π
e (t), which is the total capacity of

all activated links across the outgoing-edges from the cut U ,
where the link subset EU has been defined in Eqn. (3). Thus,

http://new.livestream.com/
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the number of distinct packets Rπi (T ) received by a node i by
time T can be upper-bounded as follows

Rπi (T ) ≤
T∑
t=1

∑
e∈EU

ces
π
e (t) = u ·

T∑
t=1

sπ(t), (29)

where we define the |E|-dimensional cut-vector u = (ue, e ∈
E), such that ue = ce1[e∈EU ], and a · b is the inner product
of two vectors.5 Dividing both sides by T yields

Rπi (T )

T
≤ u ·

(
1

T

T∑
t=1

sπ(t)

)
.

Hence,

λ∗ − ε
(a)

≤ min
j∈V

lim inf
T→∞

Rπj (T )

T
≤ lim inf

T→∞

Rπi (T )

T

≤ lim inf
T→∞

u ·
(

1

T

T∑
t=1

sπ(t)

)
, (30)

where (a) follows because π is assumed to be a broadcast
policy of rate at least λ∗ − ε. Since the above holds for any
proper-cut u ∈ U , we have

λ∗ − ε ≤ min
u∈U

lim inf
T→∞

u ·
(

1

T

T∑
t=1

sπ(t)

)
(31)

Now consider the following lemma.

Lemma 4. For any policy π ∈ Π, there exists a vector βπ ∈
conv(S) such that

min
u∈U

lim inf
T→∞

u ·
(

1

T

T∑
t=1

sπ(t)

)
= min
u∈U

u · βπ

Proof: Consider a sequence of vectors ζπT
def
=

1
T

∑T
t=1 s

π(t), indexed by T ≥ 1. Since sπ(t) ∈ S for all
t ≥ 1, we have ζπT ∈ conv (S) for all T ≥ 1. Since |U| is
finite, by the definition of lim inf , there exists a sub-sequence
{u · ζπTk

}k≥1 of the sequence {u · ζπT }T≥1 such that

min
u∈U

lim
k→∞

u · ζπTk
= min
u∈U

lim inf
T→∞

u · ζπT . (32)

Since the set conv (S) ⊂ R|E| is closed and bounded, by the
Heine-Borel theorem, it is compact. Hence any sequence in
conv(S) has a converging sub-sequence. Thus, there exists a
sub-sub-sequence {ζπTki

}i≥1 and βπ ∈ conv(S) such that

ζπTki
→ βπ, as i→∞.

It follows that

min
u∈U

u · βπ (a)
= min

u∈U
lim
i→∞

u · ζπTki

(b)
= min

u∈U
lim
k→∞

u · ζπTk

(c)
= min

u∈U
lim inf
T→∞

u · ζπT

5Note that Eqn. (29) remains valid even if the network coding operations
are allowed.

(d)
= min

u∈U
lim inf
T→∞

u ·
(

1

T

T∑
t=1

sπ(t)

)
,

where (a) uses the fact that if xn → x then c · xn → c · x
for any c, xn, and x ∈ Rl, l ≥ 1; (b) follows from the fact
that if the limit of a sequence {zk ≡ u · ζπTk

} exists then
all sub-sequences {zki ≡ u · ζπTki

} converge and limi zki =
limk zk; (c) follows from Equation (32) and (d) follows from
the definition of the sequence ζπT . This completes the proof of
the lemma.

Combining Lemma 4 with Eqn. (31), we have that there
exists a vector βπ ∈ conv(S) such that

λ∗ − ε ≤ min
u∈U

u · βπ. (33)

Maximizing the right hand side of Eqn. 33 over all βπ ∈
conv(S), we have

λ∗ − ε ≤ max
β∈conv(S)

(
min
u∈U

u · β
)

(34)

Since the above inequality holds for any ε > 0, by taking
ε↘ 0 and expanding the dot product, we have

λ∗ ≤ max
β∈conv(S)

(
min

U :a proper cut

∑
e∈EU

ceβe

)
. (35)

B. Proof of Lemma 1

Consider the non-DAG wire line network of Fig. 10(a),
where all edges have unit capacity and there is no inter-
ference constraint. Since the sum of edge-capacities of the
links incoming to node a is 2, its throughput, and hence the
broadcast capacity of the network is upper bounded by 2. In
fact, the network has two edge-disjoint directed spanning trees
rooted at the source r, as shown in Figures 10(b) and 10(c).
Hence, we can achieve the broadcast capacity λ∗ = 2, e.g., by
broadcasting the odd-numbered and even-numbered packets
along the trees T1 and T2, respectively.
Consider a broadcast policy π ∈ Πin-order that ensures in-order

delivery of packets to all nodes. Let Ri(t) be the number of
distinct packets received by node i up to time t. Hence, the
node i has received the set of packets {1, 2, . . . , Ri(t)} by
time t, due to the property of in-order delivery. Consider the
directed cycle a → b → c → a in Fig. 10(a). A necessary
condition for all links in the cycle to forward (non-duplicate)
packets in slot t is Ra(t) > Rb(t) > Rc(t) > Ra(t), which is
clearly impossible. Thus, there must exist an idle link in the
cycle at every slot. Define the indicator variable xe(t) = 1
if link e is idle in slot t under the policy π, and xe(t) = 0
otherwise. Since at least one link in the cycle is idle in every
slot, we have

x(a,b)(t) + x(b,c)(t) + x(c,a)(t) ≥ 1.

Taking a time average of the above inequality yields

1

T

T∑
t=1

(
x(a,b)(t) + x(b,c)(t) + x(c,a)(t)

)
≥ 1.

Taking a lim sup at both sides, we obtain
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r

a b

c
(a) A wired network with a
directed cycle a → b →
c→ a.

r

a b

c
(b) Tree T1

r

a b

c
(c) Tree T2

Fig. 10: A wired network and its two edge-disjoint spanning
trees that yield the broadcast capacity λ∗ = 2.

∑
e∈{(a,b),(b,c),(c,a)}

lim sup
T→∞

1

T

T∑
t=1

xe(t)

≥ lim sup
T→∞

∑
e∈{(a,b),(b,c),(c,a)}

1

T

T∑
t=1

xe(t) ≥ 1.

The above inequality implies that

max
e∈{(a,b),(b,c),(c,a)}

lim sup
T→∞

1

T

T∑
t=1

xe(t) ≥
1

3
. (36)

Since the nodes {a, b, c} are symmetrically located (i.e., the
graph obtained by permuting the nodes {a, b, c} is isomorphic
to the original graph), without any loss of generality, we may
assume that the link e = (a, b) attains the maximum in the
LHS of the inequality (36), i.e.,

lim sup
T→∞

1

T

T∑
t=1

x(a,b)(t) ≥
1

3
. (37)

Noting that xe(t) = 1 if link e is idle in slot t and that node b
receives packets only from nodes r and a, we can upper bound
Rb(T ) by

Rb(T ) ≤
T∑
t=1

(
1− x(r,b)(t) + 1− x(a,b)(t)

)
≤

T∑
t=1

(
2− x(a,b)(t)

)
.

From the above it follows that,

lim inf
T→∞

Rb(T )

T
≤ 2− lim sup

T→∞

1

T

T∑
t=1

x(a,b)(t) ≤
5

3
,

where the last inequality uses (37). Thus, we have

min
i∈V

lim inf
T→∞

Ri(T )

T
≤ lim inf

T→∞

Rb(T )

T
≤ 5

3
,

which holds for all policies π ∈ Πin-order. Taking supremum
over the policy class Πin-order shows that the broadcast capacity
λ∗in-order subject to the in-order packet delivery constraint
satisfies

λ∗in-order = sup
π∈Πin-order

min
i∈V

lim inf
T→∞

Ri(T )

T
≤ 5

3
< 2 = λ∗.

i.e., the broadcast capacity of the network is strictly reduced
by the in-order packet delivery constraint in the non-DAG
network of Fig. 10(a).

C. Proof of Theorem 2

We complete the proof in four steps. First, using the
dynamics of Xj(t) in the space Π∗ (Eqn. (14)), we derive
an expression of one-slot drift of an appropriately defined
Quadratic Lyapunov function L(X(t)). Second, we design
an auxiliary stationary randomized policy πRAND for link-
activations that yields optimal broadcast throughput. Third,
this randomized policy is used to show that the system X(t)
is strongly stable for all arrival rates λ < λ∗, under the
optimal broadcast policy π∗ ∈ Π∗. Finally, based on the above
analysis, we finally show that the policy π∗ is a throughput-
optimal broadcast policy for any wireless DAG network.

(a) An Upper-bound on the drift of the policy π∗ :

Lemma 5. For the dynamics

Q(t+ 1) ≤ (Q(t)− µ(t))+ +A(t) (38)

where all variables are non-negative and (x)+ def
= max{x, 0},

we have,

Q2(t+ 1)−Q2(t) ≤ µ2(t) +A2(t) + 2Q(t)(A(t)− µ(t)).

Proof: Squaring both sides of Eqn. (38), we have

Q2(t+ 1)

≤
(
(Q(t)− µ(t))+

)2
+A2(t) + 2A(t)(Q(t)− µ(t))+

≤ (Q(t)− µ(t))2 +A2(t) + 2A(t)Q(t),

where we use the fact that x2 ≥ (x+)
2, Q(t) ≥ 0, and µ(t) ≥

0. Rearranging the above inequality finishes the proof.
Applying Lemma 5 to the dynamics (14) of Xj(t) yields,

for each node j 6= r,

X2
j (t+ 1)−X2

j (t)

≤ Y (t) + 2Xj(t)
( ∑
m∈V

µmi∗t (t)−
∑
k∈V

µkj(t)
)
, (39)

where Y (t)
def
= (

∑
m∈V µmi∗t (t))2 + (

∑
k∈V µkj(t))

2. Let
C =

∑
e ce, the sum of the capacities of all links in the

network. Now the node i∗t could be the source node r or a
non-source node in the network. In either case, since µe(t) ≤
ce,∀e ∈ E, the first term in Y (t) above is upper-bounded
by max{A2(t), C2} and the second term is upper-bounded by
C2. Hence, Y (t) ≤ max{A2(t), C2} + C2 ≤ A2(t) + 2C2.
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Since the number of arrivals per slot A(t) is assumed to have
bounded second moment, there exists a finite constant B > 0
such that E[Y (t)] ≤ E

(
A2(t)

)
+ 2C2 ≤ B.

Now define a Quadratic Lyapunov function L(X(t))
def
=∑

j 6=rX
2
j (t). From Eqn. (39), the one-slot drift ∆(X(t)) of

L(X(t)) may be computed to be

∆(X(t)) , E[L(X(t+ 1))− L(X(t)) |X(t)]

= E
[∑
j 6=r

(
X2
j (t+ 1)−X2

j (t)
)
|X(t)

]
≤ B|V |+ 2

∑
j 6=r

Xj(t)E
[ ∑
m∈V

µmi∗t (t)−
∑
k∈V

µkj(t) |X(t)
]

(a)
= B|V | − 2

∑
(i,j)∈E

E[µij(t) |X(t)]
(
Xj(t)−

∑
k∈Kj(t)

Xk(t)
)

= B|V | − 2
∑

(i,j)∈E

E[µij(t) |X(t)]Wij(t), (40)

where (a) follows from changing the order of summation and
Kj(t) and Wij(t) are as defined in Eqn. (15) and (16), respec-
tively. To emphasize the fact that the drift upper-bound (40)
depends on the control policy π ∈ Π∗, we attach a superscript
π to the control variables µ(t) as follows:

∆π(X(t)) ≤ B|V | − 2
∑

(i,j)∈E

E[µπij(t) |X(t)]Wij(t). (41)

Our optimal broadcast policy π∗ ∈ Π∗ is chosen to minimize
the upper-bound on the drift expression, given by the right-
hand side of Eqn. (41), among all policies in the space Π∗.
(b) Construction of a Stationary Randomized Policy πRAND :
Next, we construct an auxiliary randomized link-activation
policy πRAND, which will be useful later in the proof. Let
the vector β∗ ∈ conv (S) attain the upper-bound in Eqn. (5):

β∗ ∈ arg max
β∈conv(S)

min
U : a proper cut

∑
e∈EU

ceβe.

From Caratheodory’s theorem [26], there exist at most (|E|+
1) link-activation vectors {sk ∈ S} and associated non-
negative scalars {pk ≥ 0} with

∑|E|+1
k=1 pk = 1, such that

β∗ =

|E|+1∑
k=1

pksk. (42)

Hence, from Theorem 1 we have,

λ∗ ≤ min
U : a proper cut

∑
e∈EU

ceβ
∗
e . (43)

Consider an exogenous packet arrival rate λ at the source,
which is strictly less than the broadcast capacity λ∗. Thus,
there exists an ε > 0 such that λ+ ε ≤ λ∗. From Eqn. (43),

λ+ ε ≤ min
U : a proper cut

∑
e∈EU

ceβ
∗
e . (44)

For any node v 6= r other than the source, consider the specific
proper cuts Uv = V \ {v}, defined earlier in Eqn. (6). From

Eqn. (44), we have

λ+ ε ≤
∑
e∈EUv

ceβ
∗
e , ∀v 6= r. (45)

Since the underlying network topology G = (V,E) is a DAG,
there exists a topological ordering of the nodes such that: (i)
the nodes can be labelled serially as {v1, . . . , v|V |}, where
v1 = r is the source node with no in-neighbours and the node
v|V | has no outgoing neighbours and (ii) all edges in E are
oriented from vi → vj , i < j [27]; From Eqn. (45), we define
probabilities qj ∈ [0, 1] for each node vj such that

qj
∑

e∈EUvj

ceβ
∗
e = λ+ ε

j

|V |
, j = 2, . . . , |V |. (46)

Consider a randomized link-activation policy πRAND defined
as follows: at every slot t (i) it randomly selects a feasible
link-activation vector s(t) = sk with probability pk, given in
Eqn. (42), k = 1, 2, . . . , |E| + 1; (ii) for each selected link
e = (vi, vj), incoming to the node vj with se(t) = 1, the link
e is activated independently with probability qj , given by Eqn.
(46). The activated links are used to forward packets, subject
to the constraints that define the policy class Π∗ (i.e., in-
order packet delivery and that a network node is only allowed
to receive packets that have been received by all of its in-
neighbors). Note that this randomized policy is independent
of the state X(t). Since each node j ∈ V is relabeled by the
topological ordering as vl ∈ V for some 2 ≤ l ≤ |V |, from
Eqn. (46) we conclude that, for each node j 6= r, the total
expected incoming transmission rate to node j is given by∑

i:(i,j)∈E

E[µπ
RAND

ij (t) |X(t)] =
∑

i:(i,j)∈E

E[µπ
RAND

ij (t)]

= ql
∑

e∈EUvl

ceβ
∗
e = λ+ ε

l

|V |
. (47)

Equation (47) shows that under the randomized policy πRAND,
the total expected incoming capacity to each node j 6= r is
strictly larger than the packet arrival rate λ. According to the
abuse of notation in (14), at the source node r we have∑
i:(i,r)∈E

E[µπ
RAND

ir (t) |X(t)] = E[
∑

i:(i,r)∈E

µπ
RAND

ir (t)] = λ.

(48)
From Eqns. (47) and (48), if node i appears prior to node j
in the aforementioned topological ordering, i.e., if i ≡ vli <
vlj ≡ j for some li < lj , then∑
k:(k,i)∈E

E[µπ
RAND

ki (t) |X(t)]−
∑

k:(k,j)∈E

E[µπ
RAND

kj (t) |X(t)] ≤ − ε

|V |
(49)

(c) Stochastic Stability of {X(t)}t≥0 under π∗ : The drift
inequality (41) holds for any policy π ∈ Π∗. Our broadcast
policy π∗ observes the system state X(t) and minimizes the
upper-bound on drift at every slot. Comparing the activations
selected by the policy π∗ with πRAND in slot t, we have

∆π∗(X(t)) ≤ B|V | − 2
∑

(i,j)∈E E
[
µπ
∗

ij (t) |X(t)]Wij(t)
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≤ B|V | − 2
∑

(i,j)∈E

E
[
µπ

RAND

ij (t) |X(t)]Wij(t)

= B|V |+ 2
∑
j 6=r

Xj(t)

( ∑
m∈V

E
[
µπ

RAND

mi∗t
(t) |X(t)

]
−
∑
k∈V

E
[
µπ

RAND

kj (t)|X(t)
])

≤ B|V | − 2ε

|V |
∑
j 6=r

Xj(t). (50)

Since node i∗t is an in-neighbour of node j (10), the node i∗t
must appear before j in any topological ordering of the DAG
G. Hence, the inequality in (50) follows directly from (49).
Taking expectation of both sides in (50) with respect to X(t),

E
[
L(X(t+ 1))

]
− E

[
L(X(t))

]
≤ B|V | − 2ε

|V |
E||X(t)||1,

where || · ||1 is the `1-norm. Summing the above inequality
over t = 0, 1, 2, . . . T − 1 yields

E
[
L(X(T ))

]
−E
[
L(X(0))

]
≤ B|V |T − 2ε

|V |

T−1∑
t=0

E||X(t)||1.

Dividing the above by 2Tε/|V | and using L(X(T )) ≥ 0,

1

T

T−1∑
t=0

E||X(t)||1 ≤
B|V |2

2ε
+
|V |E[L(X(0))]

2Tε

Taking a lim sup of both sides as T →∞, we have

lim sup
T→∞

1

T

T−1∑
t=0

∑
j 6=r

E[Xj(t)] ≤
B|V |2

2ε
, (51)

which implies that the virtual-queue process {X(t)}∞t=0 is
strongly stable [8] under the policy π∗ ∈ Π∗.

(d) Throughput-optimality of π∗ : Finally, we show that the
strong stability of the virtual queues Xj(t) implies that the
policy π∗ achieves the broadcast capacity λ∗ in a DAG, i.e.,
for all arrival rates λ < λ∗, we have

lim
T→∞

Rj(T )

T
= λ, ∀j.

Equation (14) shows that the virtual queues Xj(t) have
bounded departures (due to the bounded link capacities). Thus,
strong stability of Xj(t) implies that all virtual queues Xj(t)
are rate stable [8, Theorem 2.8], i.e., limT→∞Xj(T )/T =
0,w.p.1 for all j. Using union-bound, it follows that,

lim
T→∞

1

T

∑
j 6=r

Xj(T ) = 0, w.p. 1 (52)

Now consider any node j 6= r in the network. We can
construct a simple path σ(r

def
= uk → uk−1 . . . → u1

def
= j)

from the source node r to the node j by running Algorithm
3 on the DAG G(V,E).

Algorithm 3 chooses the parent of a node ui in the path σ
as the one that has the least relative packet deficit as compared
to ui. Since the underlying graph G(V,E) is a connected DAG
(i.e., there is a path from the source to every other node in
the network), the above path construction algorithm always

Algorithm 3 r→ j Path Construction Algorithm
Require: Graph G(V,E), node j ∈ V

1: i← 1
2: ui ← j
3: while ui 6= r do
4: ui+1 ← arg minm∈δin(ui)Qmui

(t);
5: i← i+ 1
6: end while

terminates with a path σ(r → j). The number of distinct
packets received by node j up to time T can be written as a
telescoping sum of relative packet deficits along the path σ,

Rj(T ) ≡ Ru1
(T )

=

k−1∑
i=1

(
Rui

(T )−Rui+1
(T )
)

+Ruk
(T )

(∗)
= −

k−1∑
i=1

Xui(T ) +Rr(T )

= −
k−1∑
i=1

Xui(T ) +

T−1∑
t=0

A(t), (53)

where the equality (∗) follows the observation that (see (10))

Xui
(T ) = Qui+1ui

(T ) = Rui+1
(T )−Rui

(T ).

Using the bound
∑k−1
i=1 Xui

(t) ≤
∑
j 6=rXj(t) (since Xj(t) ≥

0) and Eqn. (53), we conclude that for every node j 6= r,

1

T

T−1∑
t=0

A(t)− 1

T

∑
j 6=r

Xj(T ) ≤ 1

T
Rj(T ) ≤ 1

T

T−1∑
t=0

A(t).

Finally, using the Strong Law of Large Numbers for the arrival
process {A(t)}t≥0 and Eqn. (52), we conclude

lim
T→∞

Rj(T )

T
= λ, ∀j. w.p. 1

This concludes the proof.

D. Proof of Lemma 3

We regard the DAG G as a wire line network in which all
links can be activated simultaneously at a slot. Theorem 2 and
Eqn. (8) show that the broadcast capacity of the network G is

λ∗ = λDAG = min
U : a proper cut

∑
e∈EU

ce = min
{Uv,v 6=r}

∑
e∈EUv

ce

(∗)
= min

v∈V \{r}
din(v), (54)

where the sets Uv and EUv
are defined in Eqns. (6) and (3)

respectively. The equality (∗) follows from the assumption
that ce = 1,∀e ∈ E. Edmond’s Theorem [9] states that the
maximum number of disjoint spanning trees in the graph G is

k∗ = min
U : a proper cut

∑
e∈EU

ce. (55)

Combining (54) and (55) completes the proof of the Lemma.
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