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Abstract

In this expository article we revisit the topic of capacity scaling in wireless relay networks
from a percolation theory perspective. In particular, following the works of Franceschetti et al [2].,
we give an outline of a construction to show that in a large wireless network with interference, it is
possible, w.h.p., to sustain a non-zero throughput between any two source-destination pair chosen
among any « fraction of nodes, 0 < o < 1. Then using Information Theoretic arguments and in
particular, utilizing the Broadcast-Cut bound from multi terminal network information theory, we
prove a converse result and show that w.h.p., there exists a set of strictly positive fraction of nodes
such that it is impossible to sustain any given non-zero throughput between any source-destination
pair in it. In this article, our contribution is to develop a new, short and simple yet rigorous proof
for the converse utilizing Monotone Convergence Theorem and Campbell’s Theorem.

1 Introduction

In this article we consider asymptotic source-destination multihop relay capacity in a static wireless
network, where a large number of wireless nodes are distributed in a plane according to a Poisson
Point Process of unit intensity. We assume an underlying multi terminal AWGN channel, with a
given loss function /(), which satisfies some regularity conditions. Under a similar network model,
the following important result was established in [3]], where A(n) denote a feasible throughput that
every node is able to deliver to its destination.

Theorem 1. (Main result 4 in [3|]) There exists constants ¢ and ¢’ s.t.

nlggo P(A(n) = ﬁ is feasible ) = 1 (1)
lim P(\(n) = ~— is feasible) = 0 )

n—o00 \/ﬁ

This indicates that \(n) asymptotically converges to zero. In this article, we look at a slightly different
situation by fixing source s and destination d and assuming that only s has packets to send. Other
nodes have no packets to send, and they potentially help in s — d transmission, by possibly relaying



some packets belonging to the s — d session. We show that a non-zero asymptotic throughput can be
achieved w.h.p. for a given « fraction of the network. We also prove a converse result, by invoking
information theoretic ideas to show that positive throughput can not be achieved among the entire
network w.h.p.

2 System Model

2.1 Network Model

In this article we consider realizations of an extended network which is formed by placing nodes ac-
cording to a Poisson Point Process of unit intensity in the plane R? and restricting them to the square
B, = [—‘/TE, \/75] X [—‘/75, */TE] w.p. 1. This ensures an expected number of n nodes within the square
B,,. Now, for any » > 0, we impose a Boolean connectivity model on B,, by connecting any two
nodes in B, iff their euclidean distance is less than or equal to . We call the resulting graph G,,(7).
We then fix a suitable value of r and study the random graph families {G,,(r)} by letting n — oo to

obtain single-source-single-destination asymptotic throughput scaling results.

2.2 Interference Model

We assume that any of the n users, if scheduled, transmits with power P. For the achievability proof,
we choose the simplest one-hop pairwise coding-decoding strategy and a TDM schedule for trans-
mission. The pair-wise coding scheme has the advantage of being practically implementable with low
overhead and decoding complexity. Decoding is done at receiver by simply treating other simultane-
ous transmissions as noise. Hence, assuming an AWGN channel with interference, an achievable rate
for transmission from node 7 to node j over unit bandwidth is given by

Pl(fﬂi,x]’) )
No + > gz Uwg, i)

R(x;,xj) = log (1 + 3)

Where [(z;, z;) denotes path loss between z; and z; and is given by
[(z;, ;) = min{1, e_7d“/d%}

Where dz‘j = |IZ —ZL’j|,’Y >0, > 2.

3 Outline of the Achievability Proof

In this section, we state relevant percolation theory results that will be used in constructing a scheme
to achieve a strictly positive single-source-single-destination throughput under the interference model.
This relies on a percolation theoretic argument of having a large connected cluster of nodes containing
the origin. The main steps of the construction are as follows

1. Foreach 0 < o < 1, we show the existence of a finite radius r, > 0 such that in the correspond-
ing Boolean Model (where two nodes are considered connected iff their euclidean distance is
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Figure 1: Sketch of Continuous Percolation Function 0(r)

less than or equal to r,,) there exists a connected cluster, containing the origin, which includes
a given constant « fraction of nodes (0 < a < 1) with high probability. Since o can be made
arbitrarily close to 1, this implies that a random source and destination will lie in that connected
cluster with high probability.

2. We then develop a shortest path routing strategy, which relays messages through the connected
paths from the source to destination.

3. Since 7, is finite, we can bound total interference power at each slot by scheduling alterna-
tive nodes on the shortest path from source to destination. This ensures a constant per-hop
throughput and concludes the achievability proof.

In the following, we define and show the existence of a relevant connectivity property stated in Step
1 above. For that we need a couple of classical definitions and theorems on Percolation of Boolean
Model of an underlying PPP observed in the whole R? plane.

3.1 «-almost Connectivity of G, ()

Definition 1. 0(r) is the probability that origin is contained in an infinite cluster in a boolean model,
for an underlying PPP, with connectivity radius r.

The graph for 0(r) is sketched as in Fig.

Definition 2. For any o € (0,1), G,.(r) is said to be a-almost connected if it contains a connected

component of at least an nodes.

Now we will be relating 6(r), which is essentially a connectivity property of an infinite graph to a-
almost connectivity of a finite n-node graph via the following theorem. This accomplishes step 1 as
stated in the outline.

Theorem 2. Let

ro = inf{r: 6(r) > a} 4)
Then for any o € (0,1), if r > rq, then G,,(r) is a-almost connected w.p. 1
Theorem is proved by showing existence of a box By, (0 < < 1) such that it contains atleast an

nodes that are on an infinite cluster in the Boolean Model for an appropriate parameter » = r, > 0
and the box By, is surrounded by a closed circuit as shown in figure [3.1]



Figure 2: Routing and Scheduling

3.2 Routing and Scheduling Strategy

Once we establish connectivity of an nodes through Theorem [2, we form a virtual network by con-
necting two nodes iff they are within an euclidean distance of 7, from each other. We then route
packets from source s to destination d via a shortest path in this network using other nodes as relays
as shown in Figure [3.2] Because of the shortest-path property, it follows that any ball on the shortest
path has overlap with at most two balls, its successor and predecessor, otherwise, we would have
taken the short-cut. Thus we use a periodic schedule of length three where we transmit from every
third node on the shortest path at a time-slot. Note that interfering nodes are atleast 2r distance away
from any receiver. It can be then easily shown that total interference power is upper bounded by a
finite constant and hence per-hop capacity along the shortest path, calculated using Eqn[3]is lower
bounded by a non-zero constant, independent of n.

4 Proof of the Converse

Till now we have shown that as « — 1, the rate of communication goes to zero, as r, — 00.
However, this does not rule out the possibility that a different strategy could achieve a constant rate
w.h.p. when a@ — 1. In the following, we prove a converse result that shows that it is not possible and
a non-vanishing rate can not be achieved by all the nodes.



Theorem 3. Forany R > 0and 0 < o < 1, let A, (R, «) be the event that there exists a set S, of at
least an nodes, such that for any x,y € S,, x can not communicate with y at rate R. Then for any
R > 0, there exists a(R) > 0, such that

lim P(A,(R,a)) =1

n—oo

We give a different and shorter proof than what is given in the paper [2], under the assumption
Jy° «l?(x)dx < oc. To this end, we use the following theorem

Theorem 4. Campbell’s Theorem: Let X be a Poisson process with density \ and let f : R> — R
be a function satisfying

/ min(|f(z)], 1)dz < o0 )
R2
Define

=Y f(x) (6)
reX
Then we have

E(X) =A g f(z)dz (7)

With the help of the previous theorem, we prove the following theorem that will be used in the proof
of the converse.

Theorem 5. IffoOo ri?(r)dr < oo then, for a fixed source s, and for any § > 0,0 < € < 1, there exists
a natural number N s.t.

IP’( Yo Ps,m) < 5) > € (8)

iils—xz;|>N
Proof. First we define the sequence of r.v.s {Y;}32, as follows

Vo= Y Plsa) ©)

it[s—xz;|<n

i.e. Y, denotes the sum of all gains at the source s due to all nodes that are located within a radius
n of the source. Clearly Y, ¥, where & = Y _ [*(s,z;). Since {Y,}s are non-negative and
monotone increasing, we can apply Monotone Convergence Theorem to conclude that

E(Y,) /E(X) = 2m/ ri(r)dr = ¢ < oo (10)

RQ

Where the last equality follows from Campbell’s Theorem and our assumption on the function /2().
Now for any ¢ > 0,

)
— M since, ¥ > Y, w.p.1 (12)
N 0 asn—o0 (13)

P2 -Ya| >24) < (11



Where Eqn [[1] follows from Markov Inequality and Eqn. [13] follows from Eqn. [I0} The above result
implies that for any, 6 > 0,0 < € < 1, we can choose an N s.t.

IP( > Psa) < 5) > € (14)
i:|s—xzi|>N

This concludes the proof. [

Now, we prove the converse using Broadcast-Cut bound from Information Theory, where we will
be using Theorem [5]to show that a necessary condition for achievability for any rate R > 0 does not
hold, thus proving Theorem 3] We now state a special case of Broadcast-Cut bound from Information
Theory [1]].

Theorem 6. For all nodes s, d, the achievable rate between them in a multi-terminal AWGN channel
is upper bounded as

15)

R(s,d) < log (1 n PZ#]SVZQ(&QJ))

Proof of Theorem 3

Proof. If arate R > 0 is achievable between source s and destination d, from theorem [6] we neces-
sarily have that

> P(s,x) > %(23 —1) = (say) (16)
TF£S
Theorem E] says that, there exists a natural number N s.t. if there is no node within a radius of N
from the source, then the above condition is violated with positive probability e. But the probability
that there is no node within a radius N of the source is independent of the above event (since the
intersection of the concerned areas for the two events involved is an empty set) and has a positive
probability given by g = e ™V ’ % > (. Hence for a given source s, there is a strictly positive
probability p = ge > 0, such that the necessary condition in[16]is violated for any positive rate R > 0.
Let Z,, be the number of Poisson Points inside the box B,, for which the above holds. Then by ergodic
theorem, we have a.s.
lim é =p>0 (17

n—oo N

]
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