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We consider a classical computational problem from Information Theory, namely,
numerically determining the Shannon Capacity of a given discrete memoryless chan-
nel. We formulate the problem as a convex optimization problem and review a classical
algorithm, namely, the Blahut-Arimoto (BA) algorithm [1] that exploits the particular
structure of the problem. This algorithm is an example of an alternating minimizing al-
gorithm with a guaranteed rate of convergence Θ( 1

k ). Moreover, if the optimal solution
is unique, this algorithm achieves an exponential rate of convergence. Then we review
some recent advances made on this problem using methods of convex optimization.
First, we review [2] where the authors present two related algorithms, based on natural
gradient and proximal point methods respectively, that are potentially faster than the
original Blahut-Arimoto algorithm. Finally, we review [4] that considers the problem
from a dual perspective and presents a dual algorithm that is shown to be a geomet-
ric program. We then critically evaluate the relative performance of these methods on
specific problems. Finally, we present some directions for further research on this in-
teresting problem.

1 Introduction
Claude Shannon’s 1948 paper [5] marked the beginning the field of mathematical study
of Information and reliable transmission of Information over a noisy communication
channel, known as Information Theory. In that paper, through some ingenious mathe-
matical arguments, he showed that information can be reliably transmitted over a noisy
communication channel if the rate of transmission of information is less than the chan-
nel capacity, a fundamental quantity determined by the statistical description of the
channel. In particular, the paper shows the startling fact that presence of noise in a
communication channel limits only the rate of communication and not the probability
of error in information transmission.
In the simplest case of discrete memoryless channel (DMC), the channel capacity is
expressed as a convex program with the input probability distribution as the optimiza-
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Figure 1: A Communication Channel

tion variables. Although this program can be solved explicitly in some special cases,
no closed form formula is known for arbitrary DMCs. Hence one needs to resort to the
techniques of convex optimization algorithms to evaluate the channel capacity of an
arbitrary DMC. In this expository article, we will discuss an elegant iterative algorithm
obtained by Suguru Arimoto, presented in IEEE Transactions on Information Theory
in 1972. In this article, we will strive to provide complete proof of the key results start-
ing from the first principles.

2 Preliminary Definitions and Results
In this section, we will define some standard Information Theoretic functionals that
will be extensively used in the rest of the paper. All random variables discussed in
this paper are assumed to take value from a finite set (i.e. discrete) with strictly pos-
itive probabilities and all logarithms are taken with respect to base 2, unless specified
otherwise.

Definition The Entropy H(X) of a random variable X taking value from a finite
alphabet X with Probability Mass Function pX(x) is defined as:

H(X) = E(− log pX(X)) = −
∑
x∈X

pX(x) log(pX(x)) ≡ H(pX) (1)

Note that H(X) depends only the probability measure of the random variable X and
not on the particular values that X takes.

Definition The Relative Entropy D(pX ||qX) of two PMFs pX(·) and qX(·) (with
qX(x) > 0,∀x ∈ X ) supported on the same alphabet space X is defined as:

D(pX ||qX) =
∑
x∈X

pX(x) log
pX(x)

qX(x)
(2)

Lemma 2.1. For any two distributions p and q with the same support, we have

D(p||q) ≥ 0 (3)

With equality holding iff p = q.



Proof. Although this result can be proved directly using Jensen’s inequality, we opt to
give an elementary proof here. The fundamental inequality that we use is

exp(x) ≥ 1 + x, ∀x ∈ R (4)

with the equality holding iff x = 0.
The proof of this result follows from simple calculus. Taking natural logarithm of both
sides of the above inequality, we conclude that for all x ∈ R

ln(x) ≤ x− 1 (5)

with the equality holding iff x = 1.
Now we write,

−D(p||q) =

N∑
i=1

pi log
qi
pi

≤
N∑
i=1

pi(
qi
pi
− 1) (6)

=

N∑
i=1

qi −
N∑
i=1

pi

= 1− 1

= 0

Where inequality (6) follows from Eqn. (5). Hence we have

D(p||q) ≥ 0 (7)

Where the equality holds iff the equality holds in Eqn. 6, i.e. if p = q.

Definition The mutual information I(X;Y ) between two random variables X and Y ,
taking values from the alphabet set X ×Y with joint distribution pXY (·) and marginal
distributions pX(·) and pY (·) respectively, is defined as follows:

I(X;Y ) = D(pXY (·, ·)||pX(·)pY (·)) =
∑

(x,y)∈X×Y

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
(8)

Writing pXY (x, y) as pX(x)pY |X(y|x), the above quantity may be re-written as

I(X;Y ) =
∑

(x,y)∈X×Y

pX(x)pY |X(y|x) log
pY |X(y|x)

pY (y)

=
∑

(x,y)∈X×Y

pX(x)pY |X(y|x) log
pY |X(y|x)∑

z∈X pX(x)pY |X(y|z)
(9)



Definition A Discrete Memoryless Channel [6], denoted by (X , pY |X(y|x),Y) con-
sists of two finite setsX andY and a collection of probability mass functions {pY |X(·|x), x ∈
X}, with the interpretation that X is the input and Y is the output of the channel.

The capacity C of the DMC is defined as the maximum possible rate of informa-
tion transmission with arbitrary small probability of error. Shannon established the
following fundamental result in his seminal paper [5].

Theorem 2.2 (The Noisy Channel Coding Theorem).

C = max
pX

I(X;Y ) (10)

In the rest of this article, we discuss algorithms that solve the optimization problem
10 for a given DMC.

3 Some Convexity Results
In this section we will establish the convexity of the optimization problem 10, start-
ing from the first principles. To simplify notations, we re-label the input symbols as
[1 . . . N ] and output symbols as [1 . . .M ] where N = |X | and M = |Y|. We denote
the 1×N input probability vector by p, theN×M channel matrix byQ and the 1×M
output probability vector by q. Then by the laws of probability, we have

q = pQ (11)

Hence the objective function I(X;Y ) can be re-written as

I(X;Y ) = I(p,Q) =

N∑
i=1

M∑
j=1

piQij log
Qij
qj

=

N∑
i=1

pi
( M∑
j=1

Qij logQij
)
−

M∑
j=1

( N∑
i=1

piQij
)

log qj

=

N∑
i=1

pi
( M∑
j=1

Qij logQij
)
−

M∑
j=1

qj log qj (12)

Where we have utilized equation 11 in the last equation.

Lemma 3.1. For a fixed channel-matrixQ, I(p,Q) is concave in the input probability
distribution p and hence the problem 10 has an optimal solution.

Proof. We first establish that the function f(x) = x log x, x ≥ 0 is convex in x.
To establish this, just note that f ′′(x) > 0,∀x > 0. Hence the function f(q) =∑M
i=1 qi log qi is convex in q. Now from Eqn. 11 we note that q is a linear transfor-

mation of the input probability vector p. Hence, viewed as a function of p, the second
term on the right of Eqn. 12 is convex in p. Since the first term is linear in p, the result
follows.



Since the constraint set in the optimization problem 10 is the probability simplex
p1 = 1, pi ≥ 0, the above lemma establishes that the optimization problem 10 is that
of maximizing a concave function over a convex constraint set. We record this fact in
the following theorem

Theorem 3.2. The optimization problem given in 10 is convex.

4 A Variational Characterization of Mutual Informa-
tion

In this section we will express the mutual information I(X;Y ) as variational problem.
This will lead us directly to an alternating minimization algorithm for solving the op-
timization problem 10.
Let us denote the set of all conditional distributions on the alphabet X , indexed by
the output alphabet Y by Φ = {φ(·|j), j ∈ Y}. For any φ ∈ Φ define the quantity
Ĩ(p,Q;φ) as follows:

Ĩ(p,Q;φ) =

N∑
i=1

M∑
j=1

piQij log
φ(i|j)
pi

(13)

The concavity of Ĩ(p,Q;φ) w.r.t. p and φ is readily apparent.

Lemma 4.1. For fixed p and Q, Ĩ(p,Q;φ) is concave in φ. Similarly, for fixed φ and
Q, Ĩ(p,Q;φ) is concave in p.

Proof. This follows from the concavity of the functions log(x) and x log 1
x and the

definition of Ĩ(p,Q;φ).

Clearly, from the defining Eqn. 12, it follows that for the particular choice φ∗(i|j) =

pi
Qij∑N

i=1 piQij
, we have

Ĩ(p,Q;φ∗) = I(p,Q) (14)

The following lemma shows that φ∗ maximizes Ĩ(p,Q; ·).

Lemma 4.2. For any matrix of conditional probabilities φ, we have

Ĩ(p,Q;φ) ≤ I(p,Q) (15)

Proof. We have,

I(p,Q)− Ĩ(p,Q;φ) =

N∑
i=1

M∑
j=1

piQij log
Qij
qj
−

N∑
i=1

M∑
j=1

piQij log
φ(i|j)
pi

(16)

=

M∑
j=1

qj

N∑
i=1

piQij
qj

log
piQij/qj
φ(i|j)

(17)

=

M∑
j=1

qj

N∑
i=1

φ∗(i|j) log
φ∗(i|j)
φ(i|j)

(18)



Define r(i|j) = piQij/qj which can be interpreted as a posteriori input probability
distribution given the output variable to take value j. Then we can write down the
above equation as follows

I(p,Q)− Ĩ(p,Q;φ) =

M∑
j=1

qjD(φ∗(·|j)||φ(·|j)) (19)

Which is non-negative and equality holds iff φ(i|j) = φ∗(i|j),∀i, j, by virtue of lemma
2.1.

Combining the above results, we have the following variational characterization of
mutual information

Theorem 4.3. For any input distribution p and any channel matrixQ we have

I(p,Q) = max
φ∈Φ

Ĩ(p,Q;φ) (20)

And the conditional probability matrix that achieves the maximum is given by

φ(i|j) = φ∗(i|j) = pi
Qij∑N

i=1 piQij
(21)

Based on the above theorem, we can recast the optimization problem 10 as follows

C = max
pX

max
φ∈Φ

Ĩ(p,Q;φ) (22)

Since the channel matrix Q is fixed, we can view the optimization problem 22 as op-
timizing over two different sets of variables, p and φ. One natural iterative approach
to solve the problem is to fix one set of variables and optimize over the other and
vice versa. This method is especially attractive when closed form solution for both the
maximizations are available. As we will see in the following theorem, this is precisely
the case here. This is in essence the Blahut-Arimoto (BA) algorithm for obtaining the
capacity of a Discrete Memoryless Channel [1].

5 The geometric idea of alternating optimization
We consider the following problem, given two convex sets A and b in Rn as shown in
Figure 2, we wish to determine the minimum distance between them. More precisely,
we wish to determine

dmin = min
a∈A,b∈B

d(a, b) (23)

Where d(a, b) is the euclidean distance between a and b. An obvious algorithm to do
this would be to take any point x ∈ A, and find the y ∈ B that is closest to it. Then
fix this y and find the closest point in A. Repeating this process, it is clear that the
distance is non-increasing at each stage. But it is not obvious whether the algorithm



A B

Figure 2: Alternating Minimization

converges to the optimal solution. However, we will show that if the sets are probability
distributions and the distance measure is the relative entropy then the algorithm does
converge to the minimum relative entropy between two sets. To use the above idea of
alternating optimization in problem 22, if possible, it is advantageous to have a closed
form expression for the solution of either optimization problem. The theorem below
indicates that this is indeed possible and finds the solution of either optimization in
closed form.

Theorem 5.1. For a fixed p andQ, we have

arg max
φ∈Φ

Ĩ(p,Q;φ) = φ∗ (24)

Where,

φ∗(i|j) = pi
Qij∑N

k=1 pkQkj
(25)

And for a fixed φ andQ, we have

arg max
p

Ĩ(p,Q;φ) = p∗ (26)

Where the components of p∗ are given by,

p∗(i) =
ri∑
k rk

(27)

And the maximum value is given by

max
p

Ĩ(p,Q;φ) = log(
∑
i

ri) (28)

Where,

ri = exp

(∑
j

Qij log φ(i|j)
)

(29)



Proof. The first part of the theorem is already proved as part of the theorem 4.3. We
prove here the second part only.
As with any constrained-optimization problem with equality constraint, a straight-
forward way to approach the problem is to use the method of lagrange-multiplier. How-
ever an elegant way to solve the problem is to use lemma 2.1 in a clever way to tightly
upper-bound the objective function and then to find an optimal input-distribution p∗

which achieves the bound. We take this approach here.

Consider an input distribution p∗ such that p∗(i) = Dr(i),∀i ∈ X where,

log r(i) =
∑
j

Qij log φ(i|j) (30)

And D is the normalization constant, i.e. D = (
∑
i∈X r(i))

−1. From Lemma 2.1, we
have

D(p||p∗) ≥ 0 (31)

i.e.,

N∑
i=1

pi log pi ≥
N∑
i=1

pi log p∗(i) = logD +

N∑
i=1

pi

M∑
j=1

Qij log φ(i|j) (32)

Rearranging the above equation, we have

Ĩ(p,Q;φ) =

N∑
i=1

M∑
j=1

piQij log
φ(i|j)
pi

≤ − logD (33)

With the equality holding iff p = p∗. Clearly the optimal value is given by
− logD = log

∑
i ri.

Equipped with Theorem 5.1, we are now ready to describe the Blahut-Arimoto
(BA) algorithm formally.

Step 1: Initialize p(1) to the uniform distribution over X , i.e. p(1)
i = 1

|X | for
all i ∈ X . Set t to 1.
Step 2: Find φ(t+1) as follows:

φ(t+1)(i|j) =
p

(t)
i Qij∑
k p

(t)
k Qkj

, ∀i, j (34)

Step 3: Update p(t+1) as follows:

p
(t+1)
i =

r
(t+1)
i∑

k∈X r
(t+1)
k

(35)



Where,

r
(t+1)
i = exp

(∑
j

Qij log φ(t+1)(i|j)
)

(36)

Step 4: Set t← t+ 1 and goto Step 2.

We can combine Step 2 and Step 3 as follows. Denote the output distribution
induced by the input distribution pt by qt, i.e. qt = ptQ. Hence from Eqn. 34 we
have

φ(t+1)(i|j) =
p

(t)
i Qij
q(t)(j)

(37)

We now evaluate the term inside the exponent of Eqn 36 as follows

∑
j

Qij log φ(t+1)(i|j) =
∑
j

Qij log
p

(t)
i Qij
q(t)(j)

= D(Qi||q(t)) + log p
(t)
i (38)

WhereQi denotes the ith row of the channel matrixQ. Hence from Eqn. 36 we have

r
(t+1)
i = p

(t)
i exp

(
D(Qi||q(t))

)
(39)

Thus the above algorithm has the following simplified description

Simplified Blahut-Arimoto Algorithm

Step 1: Initialize p(1) to the uniform distribution over X , i.e. p(1)
i = 1

|X | for
all i ∈ X . Set t to 1.
Step 2: Repeat until convergence:

q(t) = p(t)Q (40)

p
(t+1)
i = p

(t)
i

exp
(
D(Qi||q(t))

)∑
k p

(t)
k exp

(
D(Qk||q(t))

) ∀i ∈ X (41)

6 Proximal Point Reformulation : Accelerated Blahut-
Arimoto Algorithm

In this section we re-examine the alternating minimization procedure of the Blahut-
Arimoto algorithm [2]. Plugging in the optimal solution φt from the first optimization



to the second optimization, we have

pt+1 = arg max
p

Ĩ(p,Q;φt)

= arg max
p

N∑
i=1

M∑
j=1

piQij log
φt(i|j)
pi

= arg max
p

N∑
i=1

M∑
j=1

piQij log
ptiQij
piqtj

= arg max
p

( N∑
i=1

piD(Qi||qt)−D(p||pt)
)

(42)

The Eqn. (42) can be interpreted a maximization of
∑N
i=1 piD(Qi||qt) with a penalty

termD(p||pt) which ensures that the update pt+1 remains in the vicinity of pt [2]. Al-
gorithms of this type are known as proximal point methods, since they force the update
to stay in the proximity of the current guess. This is reasonable in our case because
the first term in 42 is an approximation of the mutual information I(p;Q), by replac-
ing the KLDs D(Qi||q∗) with D(Qi||qt). The penalty term D(p||pk) ensures that
the maximization is restricted to a neighbourhood of pk for which the approximation
D(Qi||q∗) ≈ D(Qi||qt) is accurate. In fact we have the following equality

pk+1 = arg max
p

(
Ĩt(p)−D(p||pt)

)
(43)

Where Ĩt(p) = I(pt,Q)+
∑N
i=1(pi−pti)D(Qi||qt), which can be shown to be a first-

order Taylor series approximation of I(p). Thus the original Blahut-Arimoto algorithm
can be thought of as a proximal point method maximizing the first-order Taylor series
approximation of I(p,Q) with a proximity penalty expressed by D(p||pt).
It is now natural to modify (43) by an emphasizing/attenuating the penalty term via a
weighting factor, i.e.,consider the following iteration

pt+1 = arg max
p

(
Ĩt(p)− γtD(p||pt)

)
(44)

The idea is that close to the optimal solution the K-L distance of p to pt would be small
and hence the proximity constraint γt can be gradually relaxed by decreasing γt. One
such possible choice of the {γt}t≥1 sequence. In the following sub-section we derive
a sequence of step-sizes that guarantees non-decreasing mutual information estimates
I(p(t),Q).
We note below the accelerated BA algorithm as derived above

Step 1: Initialize p(1) to the uniform distribution over X , i.e. p(1)
i = 1

|X | for
all i ∈ X . Set t to 1.



Step 2: Repeat until convergence:

q(t) = p(t)Q (45)

p
(t+1)
i = p

(t)
i

exp
(
γ−1
t D(Qi||q(t))

)∑
k p

(t)
k exp

(
γ−1
t D(Qk||q(t))

) ,∀i ∈ X (46)

6.1 Suitable choice of step-sizes for accelerated BA algorithm
A fundamental property of the BA algorithm is that the mutual information I(pt,Q),
which represents the current capacity estimate at the t th iteration is non-decreasing. For
the accelerated BA algorithm, we need to choose a sequence {γt}t≥1 that preserves this
property. For this we need the following lemma.

Lemma 6.1. For any iteration t, we have

D(q(t+1)||q(t)) ≥
N∑
i=1

p
(t+1)
i D(Qi||q(t)) (47)

Proof. Recall that,

q(t+1) = p(t+1)Q =

N∑
i=1

p
(t+1)
i Qi (48)

The above equation expresses the output probability vector qk+1 as a convex combi-
nation of the rows of the matrixQ. Since the relative entropy D(·||·) is convex in both
the arguments, we have

D(q(t+1)||q(t)) ≥
N∑
i=1

p
(t+1)
i D(Qi||q(t))

Equipped with the above lemma, we now establish a lower bound on increment of
mutual information I(p,Q) at each stage.

Lemma 6.2. For every stage t of the accelerated BA algorithm , we have

I(p(t+1),Q) ≥ I(p(t),Q) + γtD(p(t+1)||p(t))−D(q(t+1)||q(t)) (49)

Proof. We have from Eqn. 44 of the accelerated BA iteration

Ĩt(p(t+1))− γtD(p(t+1)||p(t)) ≥ Ĩt(p(t)) (50)



Plugging in the expression for Ĩt(·) from above, we have

I(p(t+1),Q) +

N∑
i=1

(p
(t+1)
i − p(t)

i )D(Qi||q(t)) ≥ I(p(t),Q) + γtD(p(t+1)||p(t)) (51)

Now using the lemma 6.1 and using the non-negativity of K-L divergence, the result
follows.

From the above lemma, it follows that a sufficient condition for I(p(t+1),Q) to be
non-decreasing is

1

γt
≤ D(p(t+1)||p(t))

D(p(t+1)Q||p(t)Q)
(52)

Now define the maximum KLD-induced eigenvalue ofQ as

λ2
KL(Q) = sup

p 6=p′

D(pQ||p′Q)

D(p||p′)
(53)

Using the above definition, we conclude that a sufficient condition for I(p(t+1),Q) to
be non-decreasing is given by

γt ≥ λ2
KL(Q) (54)

7 Convergence Statements of the Accelerated BA Algo-
rithm

In the previous section we proved that for any step-size sequence γt ≥ λ2
KL(Q), the

accelerated BA algorithm has the potential for increased convergence speed. For lack of
space, we only give the statements of the theorem. Complete proofs of these theorems
may be found in [2].

Theorem 7.1. Consider the accelerated BA algorithm with It =
∑
i p
t
iD(Qi||q(t))

and Lt = γt log(
∑
i p

(t)
i exp(γ−1

t D(Qi||q(t))). Assume that γinf = inft γ
−1
t > 0 and

(54) is satisfied for all t. Then

lim
t→∞

Lt = lim
t→∞

It = C (55)

And the convergence rate is at least proportional to 1/t, i.e.

C − Lt < D(p∗||p0)

µinft
(56)



8 Dual Approach : Geometric Programming
In this section, we take a dual approach to solve the problem 10 and show that the dual
problem reduces to a simple Geometric Program [4]. We also derive several useful
upper bounds on the channel capacity from the dual program.
First we rewrite the mutual information functional as follows.

I(X;Y ) = H(Y )−H(Y |X) = −
M∑
j=1

qj log qj − pr (57)

Where,

ri = −
M∑
j=1

Qij logQij (58)

Subject to,

q = pQ (59)
p1 = 1, p >= 0 (60)

Hence the optimization problem 10 may be rewritten as follows

max −pr −
M∑
j=1

qj log qj (61)

Subject to,

pQ = q

p1 = 1

p ≥ 0

It is to be noted that keeping two sets of optimization variables p and q and intro-
ducing the equality constraint pQ = q in the primal problem is a key step to derive an
explicit and simple Lagrange dual problem of 61.

Theorem 8.1. The Lagrange dual of the channel capacity problem 61 is given by the
following problem

min
α

log

M∑
j=1

exp(αj) (62)

Subject to,

Qα ≥ −r (63)



An equivalent version of the above Lagrange dual problem is the following Geo-
metric program (in the standard form):

min
z

M∑
j=1

zj (64)

Subject to,

M∏
j=1

z
Pij

j ≥ exp
(
−H(Qi)

)
, i = 1, 2, . . . , N

z ≥ 0

From the Lagrange dual problem, we immediately have the following upper bound on
the channel capacity.

• Weak Duality: log

(∑M
j=1 exp(αj)

)
≥ C, for all α that satisfyQα+ r ≥ 0.

• Strong Duality: log

(∑M
j=1 exp(αj)

)
= C, for the optimal dual variable α∗.

8.1 Bounding From the Dual
Because the inequality constraints in the dual problem 64 are affine, it is easy to obtain
a dual feasible α by finding any solution to a system of linear inequalities, and the
resulting value of the dual objective function provides an easily derivable upper bound
on channel capacity. The following is one such non-trivial bound.

Corollary 8.2. Channel capacity is upper-bounded in terms of a maximum-likelihood
receiver selecting arg maxi Pij for each output symbol j

C ≤ log

M∑
j=1

max
i
Pij

which is tight iff the optimal output distribution q∗ is

q∗j =
maxi Pij∑M
k=1 Pik

(65)

As is readily apparent, the geometric program Lagrange dual 64 generates a broader
class of upper bounds on capacity. This upper bounds can be effectively used to termi-
nate an iterative optimization procedure for channel capacity.



9 Conclusion
In this report, we have surveyed various convex optimization algorithms for solving the
channel capacity problem. In particular, we have derived the classical Blahut-Arimoto
algorithm from first principles. Then we established a connection with Proximal algo-
rithms and original BA iteration. Using a proper step-size sequence, we have derived
an acceerated version of the BA algorithm. Finally we have considered the dual of the
channel capacity problem and have shown that its Lagrange dual is given by a Geo-
metric Program (GP). The GP have been effectively utilized to derive non-trivial upper
bound on the channel capacity.
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