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Bandits and Structured Bandits

General Bandits

General Multi-armed Bandit Problem - Setup

There are K arms with the i th arm having unknown reward expectations
µi , i = 1, 2, . . . ,K . The distributions are i.i.d. w.r.t. time with support in [0, 1].

At time-step t we select one of the arms It ∈ {1, 2, . . . ,K} to play, yielding a
random reward XIt . Action (or the policy) It may depend on past actions and
their outcomes. Hence over a time-horizon of n slots, we gather an expected
reward of

E
n∑

t=1

XIt =
n∑

t=1

µIt , (linearity of expectation)

If we had known the best arm i∗ ∈ arg maxµi apriori and played that arm
throughout, we would have obtained an expected reward of nµ∗.

The expected regret (or, pseudo-regret) up to time n is defined as their
difference, which we want to minimize over admissible policies.

E(regret(n)) = nµ∗ −
n∑

t=1

µIt
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Bandits and Structured Bandits

General Bandits

Lower bounds and Achievability

In the special case when the reward distributions are Bernoulli (µi ), we have

Lower bounds (Lai and Robins (1985))

lim inf
n

E(regret(n))

ln(n)
≥

∑
i :µ∗−µi>0

µ∗ − µi
D(µi , µ∗)

(def)
= Cl

In other words, for large enough n, for any admissible policy

E(regret(n)) ≥ Cl ln(n) + o(ln(n))

Fortunately, there exists a simple policy UCB (Upper Confidence Bound, described
next) which achieves non-asymptotic logarithmic regret bound

Achievability

E(regret(n)) ≤ Cu ln(n) + 3K

where Cu = 6
∑

i :µ∗−µi

1
µ∗−µi

.

8 / 27



Bandits and Structured Bandits

General Bandits

Lower bounds and Achievability

In the special case when the reward distributions are Bernoulli (µi ), we have

Lower bounds (Lai and Robins (1985))

lim inf
n

E(regret(n))

ln(n)
≥

∑
i :µ∗−µi>0

µ∗ − µi
D(µi , µ∗)

(def)
= Cl

In other words, for large enough n, for any admissible policy

E(regret(n)) ≥ Cl ln(n) + o(ln(n))

Fortunately, there exists a simple policy UCB (Upper Confidence Bound, described
next) which achieves non-asymptotic logarithmic regret bound

Achievability

E(regret(n)) ≤ Cu ln(n) + 3K

where Cu = 6
∑

i :µ∗−µi

1
µ∗−µi

.

9 / 27



Bandits and Structured Bandits

General Bandits

The UCB Policy: Explore and Exploit

The principle is simple and intuitive : at time t + 1 play the arm which maximizes sum
of an exploit and explore index.

Suppose the arm i has been played Ti (t) times up to time t, yielding an average
reward of µ̂i (Ti (t)). Then at time t + 1 the policy UCB plays the arm which
maximizes the following index:

UCB policy

It+1 = arg
K

max
i=1

(
µ̂i (Ti (t)) +

√
3 ln(t)

2Ti (t)

)

Large observed average rewards µ̂i (Ti (t)) encourages to play that arm: exploit factor!

Small number of past plays Ti (t) also encourages to play that arm: explore factor!
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Bandits and Structured Bandits

Structured Bandits

Strutured Bandits

In the general bandit problem, we did not assume any underlying structure among
the distributions of different arms. The resulting constants Cl and Cu are O(K).

In many interesting combinatorial problems, number of arms K can be very large
(e.g., exponential) and hence the general bandit results are not so useful.

However, many of the interesting combinatorial problem imposes some natural
structures among the unknown distributions of the arms. Exploiting these
structures significantly improves the constants Cl ,Cu .

Combes and Proutiere (2014) analyzes one such structured bandit problem, called
Graphical Unimodal bandits.

Informally, in graphical unimodal bandits, from every arm i , there exist a path to
the optimum arm i∗ through a sequence of neighbouring arms of non-decreasing
expected rewards.
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Structured Bandits

Graphical Unimodal Bandits: In picture
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Bandits and Structured Bandits

Structured Bandits

Formal Definitions and Lower Bounds

Consider an undirected graph G(V ,E) whose vertices correspond to arms and
incident edges to a vertex i ∈ {1, 2, . . . ,K} denote its neighborhood.

There is a unique i∗ = arg maxµi and from any arm i = k1 there exists a path
p = (k1, k2, . . . , , km = i∗) such that µki < µki+1

, i = 1, 2, . . . ,m − 1.

Note that lower-bounds in General bandit does not necessarily imply a corresponding
lower-bound for the structured bandit.

Lower-bound for Unimodal Bandits (Combes and Proutiere (2014))

lim inf
n→∞

E(regret(n))

ln(n)
≥

∑
i∈Nbr(i∗)

µ∗ − µi
D(µi , µ∗)

def
= Cunimodal

l

Comparing this with the lower-bound for general bandit, we immediately see that in
general, Cunimodal

l << Cl .

Cunimodal
l is independent of number of arms (K) and is a function of only local

neighbourhood of the optimal arm.

19 / 27



Bandits and Structured Bandits

Structured Bandits

Formal Definitions and Lower Bounds

Consider an undirected graph G(V ,E) whose vertices correspond to arms and
incident edges to a vertex i ∈ {1, 2, . . . ,K} denote its neighborhood.

There is a unique i∗ = arg maxµi and from any arm i = k1 there exists a path
p = (k1, k2, . . . , , km = i∗) such that µki < µki+1

, i = 1, 2, . . . ,m − 1.

Note that lower-bounds in General bandit does not necessarily imply a corresponding
lower-bound for the structured bandit.

Lower-bound for Unimodal Bandits (Combes and Proutiere (2014))

lim inf
n→∞

E(regret(n))

ln(n)
≥

∑
i∈Nbr(i∗)

µ∗ − µi
D(µi , µ∗)

def
= Cunimodal

l

Comparing this with the lower-bound for general bandit, we immediately see that in
general, Cunimodal

l << Cl .

Cunimodal
l is independent of number of arms (K) and is a function of only local

neighbourhood of the optimal arm.

20 / 27



Bandits and Structured Bandits

Structured Bandits

Formal Definitions and Lower Bounds

Consider an undirected graph G(V ,E) whose vertices correspond to arms and
incident edges to a vertex i ∈ {1, 2, . . . ,K} denote its neighborhood.

There is a unique i∗ = arg maxµi and from any arm i = k1 there exists a path
p = (k1, k2, . . . , , km = i∗) such that µki < µki+1

, i = 1, 2, . . . ,m − 1.

Note that lower-bounds in General bandit does not necessarily imply a corresponding
lower-bound for the structured bandit.

Lower-bound for Unimodal Bandits (Combes and Proutiere (2014))

lim inf
n→∞

E(regret(n))

ln(n)
≥

∑
i∈Nbr(i∗)

µ∗ − µi
D(µi , µ∗)

def
= Cunimodal

l

Comparing this with the lower-bound for general bandit, we immediately see that in
general, Cunimodal

l << Cl .

Cunimodal
l is independent of number of arms (K) and is a function of only local

neighbourhood of the optimal arm.

21 / 27



Bandits and Structured Bandits

Structured Bandits

Formal Definitions and Lower Bounds

Consider an undirected graph G(V ,E) whose vertices correspond to arms and
incident edges to a vertex i ∈ {1, 2, . . . ,K} denote its neighborhood.

There is a unique i∗ = arg maxµi and from any arm i = k1 there exists a path
p = (k1, k2, . . . , , km = i∗) such that µki < µki+1

, i = 1, 2, . . . ,m − 1.

Note that lower-bounds in General bandit does not necessarily imply a corresponding
lower-bound for the structured bandit.

Lower-bound for Unimodal Bandits (Combes and Proutiere (2014))

lim inf
n→∞

E(regret(n))

ln(n)
≥

∑
i∈Nbr(i∗)

µ∗ − µi
D(µi , µ∗)

def
= Cunimodal

l

Comparing this with the lower-bound for general bandit, we immediately see that in
general, Cunimodal

l << Cl .

Cunimodal
l is independent of number of arms (K) and is a function of only local

neighbourhood of the optimal arm.

22 / 27



Bandits and Structured Bandits

Structured Bandits

Achievability

The basic strategy for achieving low regret bound is intuitive: explore local
neighbourhoods and exploit the currently perceived best neighbouring arm (Hill
Climbing).

More formally, at time t an index bk (t) (similar to the general bandit) is computed for
all arms in the neighbourhood of the current arm being played. The algorithm simply
chooses the neighbouring arm which maximizes this index.

Achievability

The local-search algorithm above is asymptotically optimal for Bermoulli rewards, i.e.

lim sup
n→∞

E(regret(n))

ln(n)
≤ Cunimodal

l

Note that unlike the general bandit case, here the upper and lower-bound constants
coincide.
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Application and Brainstorming

Application

Combes and Proutiere applied the result of structured bandits to rate adaptation
problem in 802.11 systems.

Here the pair (rate, mode) consists of an action (or arm of a bandit) which exhibits
graphical unimodal property in a stochastic radio environment .

Using a local neighborhood search method (called G-ORS) they designed an
asymptotically optimal rate adaptation policy.

They also extended this result to non-stationary radio environments.

In what directions can these results be extended further ?
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