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Correspondence

A Linear State-Space Analysis of the Migration
Model in an Island Biogeography System

Abhishek Sinha, Swagatam Das, and B. K. Panigrahi

Abstract—Biogeography deals with the study of the distribution of
biodiversity over space and time and has been well studied by naturists
and biologists for over the last five decades. Recently, the theory of
biogeography has been applied to solve difficult engineering optimiza-
tion problems in the form of a nature-inspired metaheuristic, known as
biogeography-based optimization (BBO) algorithm. In this correspon-
dence paper, we present an in-depth analysis of the linear time-invariant
(LTI) system model of immigration and emigration of organisms in an
island biogeography system that forms the basis of BBO. We find the
bound of the eigenvalues of the general LTI system matrix using the
Perron-Frobenius theorem from linear algebra. Based on the bounds of
the eigenvalues, we further investigate four important properties of the LTI
biogeography system, including the system reasonability with probability
distribution vectors, stability, convergence, and nature of the equilibrium
state. Our analysis gives a better insight into the dynamics of migration
in actual biogeography systems and also helps in the understanding of the
search mechanism of BBO on multimodal fitness landscapes.

Index Terms—Biogeography-based optimization (BBO), convergence,
equilibrium theory of island biogeography, island biogeography, linear
time-invariant (LTT) system, population-based optimization, stability.

I. INTRODUCTION

The term biogeography [1]-[6] refers to the study of the geograph-
ical distribution of biological organisms over different landscapes.
Mathematical models of biogeography describe how species migrate
from one island to another, how new species arise, and how species
become extinct. In the early 1960s, MacArthur and Wilson together
put forward the mathematical models of biogeography, their work
culminating with the landmark 1967 publication The Theory of Island
Biogeography [3]. They showed that the species richness of an area
could be predicted in terms of such factors as habitat area, immigration
rate, and extinction rate. Since their pioneering work, biogeography
has flourished as a major area of research [4]-[6].

In an attempt to use the concepts of island biogeography for the
purpose of engineering optimization, Simon [7] recently proposed
a metaheuristic algorithm, called biogeography-based optimization
(BBO), and demonstrated its efficient performance in optimizing sev-
eral numerical benchmarks. Central to BBO is the equilibrium theory
of island biogeography (proposed by MacArthur and Wilson [3]) that
uses a linear time-invariant (LTI) system with zero input to model
the immigration and emigration of creatures in an island. BBO uses
the states of the biogeography LTI system to determine the mutation
rate that has been shown to be important to the algorithm with a
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small population size [7]. BBO yields competitive results against many
other state-of-the-art metaheuristic algorithms, like particle swarm
optimization, ant colony optimization, genetic algorithm, evolutionary
strategies, etc., details of which can be found in [8] and the references
therein. A careful scrutiny of [7], however, reveals that the biogeog-
raphy model presented within the framework of BBO lacks sufficient
theoretical analysis to explore the important properties like stability,
convergence, and characteristics of the equilibrium state, which is very
important for understanding the actual biogeography system, as well
as improving BBO. Some significant analytical studies on complex
systems can be found in [9]-[11]. The author analyzed a simple case
of the LTI system model of island biogeography, where the immigra-
tion and emigration rates were assumed to be linear with identical
maximum. Moreover, the main theoretical analysis was based on a
conjecture on the nature of the eigenvalues of the LTI system matrix.
The author used the states of the LTI biogeography system to represent
the probability distribution of the number of species in an island, which
updates with each iteration of BBO. The reasonability of the system
state for representing a probability distribution at each iteration was,
however, not studied. Finally, the work in [7] did not prove the stability
of the LTI migration model of island biogeography system explicitly.

In this correspondence paper, we start by proving that, given the
dynamics of an LTI biogeography system, if the initial state is set to
be a probability distribution vector (PDV) [12], then the state remains
a PDV for all time. We then present a few interesting theorems
on the nature and ranges of the eigenvalues of the system matrix
in LTI system model by applying the Perron-Frobenius theorem
[13]-[16] from linear algebra. Based on the ranges of the eigenvalues
so obtained, we show that the general LTI biogeography system is
stable in the sense of Lyapunov at the origin. Next, we prove that,
given any initial state, the dynamics of the system is convergent and
the equilibrium state is equal to the eigenvector that corresponds to
the zero eigenvalue of the system matrix. Finally, we prove that the
equilibrium PDV is unimodal under two mild restrictions imposed on
the system matrix, a feature that contributes to the effectiveness of the
properties of the mutation operation in BBO.

II. ISLAND BIOGEOGRAPHY MODEL AND BBO

Mathematical models of biogeography describe the migration, spe-
ciation, and extinction of species that migrate between islands. In [7],
Simon used the term island descriptively rather than literally. That
is, an island is any habitat that is geographically isolated from other
habitats. In the classic sense of the term, an island is isolated from
other habitats by water. However, biogeographical islands can also
be habitats that are isolated by stretches of desert, rivers, impassable
mountain ranges, predators, or other obstacles. Islands that are well
suited as habitats for biological species are said to have a high
Island Suitability Index (ISI). Features that correlate with ISI include
factors such as rainfall, diversity of vegetation, diversity of topographic
features, land area, and temperature. The variables that characterize
habitability are called suitability index variables (SIVs). SIVs can be
considered the independent variables of the island, and ISI can be
considered the dependent variable [3], [7].

The fundamental idea of Simon’s BBO stemmed from the phe-
nomena described in the previous paragraph. Suppose that we have
some optimization problems and that we also have a certain number of
candidate solutions. A good solution is analogous to an island with a
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high ISI, and a poor solution is like an island with a low ISI. High-ISI
solutions are more likely to share their features with other solutions,
and low ISI solutions are more likely to accept shared features from
other solutions. A complete description of the algorithm is available in
[7]. Instead of reiterating it here, we directly move our attention to the
LTI state-space model of the biogeographical migrations used in BBO.

The MacArthur and Wilson’s LTI model of island biogeography
implicitly describes the variation of the number of species in a given
island, which is caused by the immigration and emigration of the
species among neighboring islands. Assume that the given island can
support at most n species. Let x; for ¢ = 1,2,...,n + 1 denote the
probability that the island contains exactly (i — 1) species. Then, the
probability vector & = [x1, T2, ..., T, 1]T is modeled as a variable
vector that varies with time ¢ according to the following LTI state-
space equation [3], [7]:

F= A7 )]

where A is given by (2), shown at the bottom of the page. Note that
A; and p; denote the immigration and emigration rates when there
are ¢ species in the given island and ¢ = 0, 1, ..., n. Moreover, here,
Z(t) and A are called state vector and system matrix in linear systems
theory, respectively. From the view of island biogeography, there are
two basic constraints on the immigration and emigration rates [3], [7].
First, as the number of species increases, the island gets more crowded;
therefore, the immigration rate should decrease, while the emigration
rate should increase. Second, if there are n species (i.e., the maximum
number of the species) in the given island, then the immigration rate
should be zero. On the other hand, if there are no species in the island,
then the emigration rate should be zero. To sum up, the two constraints
on the immigration and emigration rates are

AZA 2> >X, =0
O0=po <p1 <po <o < iy

(3a)
(3b)

In what follows, we shall study certain interesting properties of the LTI
biogeographical migration model presented through (1)—(3). Note that
the LTI system studied in this correspondence paper is more general
than that studied by [7, Th. 1], which only considered the special case
that o; = (¢/n) and 3; = ((n —4)/n) fori =0,1,2,...,n.

III. ANALYSIS OF THE LTI STATE-SPACE MODEL

As discussed in Section II, the state Z(¢) of the LTI system described
by (1)—(3) is used to represent the probability distribution of the num-
ber of species. Therefore, in order to make the value of the state reason-
able, Z(t) for any ¢t > 0 should remain a PDV, i.e., Z?;l z;(t) =1
and x;(t) > 0 for any ¢ € {1,2,...,n+ 1}. Given an initial state
Z(0) for the LTI system described by (1)—(3), if the initial state Z(0) is
a PDV, then it can be confirmed by the following Lemmas 1 and 2 and
Theorem 1 that the state Z(¢) remains a PDV for all ¢ > 0.

Lemma 1: Given an initial state Z(0) = [2;(0)](s+1)x1 for the LTI
system described by (1)~(3), if z;(0) > 0 forevery i € {1,2,...,n+
1}, then z;(t) > Oforalli € {1,2,...,n+ 1} andall ¢t > 0.

Proof: We have, initially, z;(0) > 0 forevery: € {1,2,...,n +
1}. Let us assume that Lemma 1 is false. Then, there must exist a time
t; > 0 and a number 7; > 0 satisfying

z;(t) >0fori=1,2,...,n+1and 0 <t <t
xi(t) <Ofori=randt; <t <7 )

where 7 is an index and r € {1,2,...,n+1}. z,(t) for all t >0
being a continuous function of time ¢, we must have

x,(t1) = 0. 5)

Then, following (1)—(3) and (5), we obtain

p1w2(t) >0, ifr=1
i’r(tl): )\r—21‘r—1(t1)+ﬂkmk+1(tl)207 1f1</€<n—|—1 (6)
)\nfl.ivn(tl) 20, 1fk::n+1

Here, the inequality in each case follows from (4). Since z,.(¢1) =
0 and #,(t;) > 0 for any choice of 7 in {1,2,...,n+ 1}, z,(¢)
must be an increasing function at ¢ = t;, and hence, there must exist
another number 75 > 0 such that x,.(t) > 0 for t; <t <t; + To.
This, however, contradicts our former assumption that x,.(¢) < 0 for
t1 <t < 7y. Hence, the earlier assumption must be false, and the
lemma holds.

Lemma 2: For the LTI system described by (1)—(3), given an ini-
tial state Z(0) = [2;(0)](n41)x1» if 2(t) = S0 @ (t), then z(t) =
S 2,(0) forall ¢ > 0.

=1
Proof: Forallt > 0, we have
dz d

L L @0+ wa(t) et 2 (1)
=&1(t) +32(t) + -+ Tny1(t)
=[11...... 1. [z1(8), za2(t) «.. ... Znyr (8]
=lixn+1) - f(t)
[Since A\,, = po = 0, it is easy to see that the sum of
elements of the column vector A.Z(t) is zero.]
=Lix(nt1) - AZ(t) =0

which implies that z(t) is a constant function of time. Thus, z(t) =
2(0) = 27 2(0) forall ¢ > 0.

Theorem 1: Given a biogeographical LTI system as per (1)—(3), if

the initial state £(0) is a PDV, Z(¢) remains a PDV for all ¢ > 0.
Proof: The proof of Theorem 1 directly follows from Lemmas
(1) and (2).

Next, we consider the general linear system model for BBO and
derive a necessary property to be followed by the matrix A. This
restriction stems from the fact that the state vectors are not any vector
from the space R™ but with the additional constraint that it is a PDV.
Then, we show that the BBO model proposed in [7] is consistent with
our theoretical requirement.

Theorem 2: Given that Z(t) is a PDV for all ¢ > 0, the sum of the
elements of each column of any general probability transition matrix
A [not necessarily in the form of (2)] is identically equal to zero.

—(Xo + ko) M1 0
Ao (A tp) pe 0
A= : (@)
)\n—Q 7()‘n—1 + ,LLn—l) Hn
0 >\n—1 _()\n + ,U/n)
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Proof: Let us denote the (i, j)th element of A by a;;. Thus, we
have to prove that

n+1
Zai]- =0 Vje(L,2,...,n+1].

i=1
Suppose that the initial state vector is given by
Z(0) = [21(0), 22(0), ..., 241 (0)]". (7)
The solution of (1) in a vector—matrix notation is given by
Z(t) = e #(0). (®)

Then, from (1), (7), and (8), it follows that

dx _
7 = AZ(0)
t=0t
ail a2 ce ayj An41n+1
az1 a2 te az; A2n 41
Gp411 An412 An41j Ap4int1
z1(0)
X .
x,(0)
T 41(0)

Thus, we have (comparing each element of both vectors on LHS and
RHS term by term)

dmid)
dt

n+1
=Y ayz;(0) Vi=[1,2,...,n+1]
o+ j=1

t=

Now, summing both sides over all ¢’s, we get

n+1 d (t) n+1n+1
IR LI ) St
i=1 t=0F =1 j=1
or,
d n+1 n+1 n+1
U SETCIS SIS o7
i=1 =0+  j=1 i=1

(interchanging the order of summation) (9)

—

However, Z(t) being a PDV, for all time ¢, we must have
?:Jrll x;(t) = 1. Thus, the left side of (9) is identically equal to zero.
Now, denoting Z?:ll a;; by Sj,forj =1,2,...,n 4 1, we have

n+1

> Sw(0) =0.

The aforementioned equation must hold good for any selection of the
initial state vector Z(0).

Now, x;(0)’s are linearly dependent with the only linear-constraint
equation as Z?;l z;(0) = 1.

Thus, we may choose only n probability variables independently
out of these n + 1 variables. Suppose now we choose z;(0) = 0 and
¢ # j; then, we have z;(0) = 1, where j may be repetitively put equal
tol,2,3,...,n+ 1.

Thus, from (10), we get S; = 0, where j = 1,2,3,...,n+1,ie.,

Z:ll a;; =0, where j € [1,2,...,n + 1] (Proved).

Corollary 1: ¢ = 0 is necessarily an eigenvalue of the matrix A,
and hence, A is singular.

(10)

Proof: That ¢ =0 is an eigenvalue of A may be proved very
easily following the theorem we prove before. Here, we will actually
show that ¢ = 0 is an eigenvalue of AT. Since the eigenvalues of A
and AT are identical, it is proven that ¢ = 0 is an eigenvalue of A.
Consider the column vector #, = [1,1,...,1]T. Then, evidently

T
.y Zai(n+1),]

i 2 7 i

n+1

X [SinceZaij:O forevery j=1,2,3,...,n+1
i=1

=0.[1,1,...,1]7T

=¢.71, where p=0.

Thus, as per the definition of eigenvalue, ¢ = 0 is an eigenvalue of AT
and, hence, A. Again, we know that the eigenvalues of A matrix satisfy
the (n + 1)th degree algebraic equation (known as the characteristic
equation of A): det(A — ¢.I) = 0, where I is the (n + 1)th order
identity matrix.

Since ¢ = 0 satisfies this equation, we have (putting ¢ = 0)

det(A) =0 (11)
thus proving that matrix A is singular.

Now, we will prove that the island biogeography system described
by (1)—(3) is stable by showing that all the eigenvalues of matrix A are
nonpositive and there is only a single eigenvalue (i.e., eigenvalue of
multiplicity one) with the value zero. To prove this, we use the famous
Perron—Frobenius theorem of linear algebra [13]-[16] for nonnegative
and irreducible matrix. Before stating the theorem, we define the
following.

Definition 1: A square n x n matrix D = [d,;] is said to be ir-
reducible if the indices 1,2,...,n can be divided into two disjoint
nonempty sets i1, %z, ...,%, and ji, ja, ..., j, (With 4 + v = n) such
that diajﬁ =0,fora=1,2,...,nand 8 =1,2,...,n. The square
matrix D is irreducible if there exist some £’s such that dif) > 0 for
each 7 and j chosen from {1,2,...,n}. Here, dl(.? denotes the (3, j)th
element of the matrix D* for some positive integer k.

Now, the theorem may be stated as follows.

Perron—Frobenius Theorem [13]: If C' be a nonnegative and irre-
ducible matrix, then we have the following.

1) C has a positive eigenvalue q that is equal to its spectral radius
p(C).

2) qis a simple eigenvalue of C, i.e., the multiplicity of q is one.

3) There is a positive right eigenvector associated with q.

4) One has the eigenvalue estimate

min E ¢ij < g < max g Cij-
1 1
J J

12)

However, before we apply this theorem to matrix A, we need to
transform it to a suitable form, so that the conditions for applying the
Perron-Frobenius theorem (viz., nonnegativity and irreducibility) are
met. Here, actually, we obtain the upper bound for the eigenvalues of
AT, Since the eigenvalues of matrix A are identically equal to that of
matrix AT = B (for example), in the process, we also obtain the upper
bound for the eigenvalues of matrix A.

Let max;(A\; + p;) = 7. Thus, v > (X\; + p;) for all 4 =1,2,3,

..,n + 1. Let us perform the following linear transformation on B:

C:%(B+VI) (13)
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where I isan (n + 1) x (n + 1) identity matrix. On the calculation, C'
takes the form (14), shown at the bottom of the page. Now, it is given
that \; > 0fori=0,1,2,...,n—land pu; >0fori=1,2,...,n
Thus, all the off-diagonal terms are greater than zero. Again, v >
(A; + p); hence, all the diagonal terms are greater than or equal to
zero. Now, we prove the following three lemmas on matrix C'
Lemma 3: C'is a stochastic matrix and, hence, nonnegative.
Proof: The proof is almost obvious because of the following.

1) All the elements of C' are nonnegative and less than one.
2) Sum of each row elements = 1 [obvious by the inspection of
(14)].
Lemma 4: Matrix C is irreducible.
Proof: Let us denote the (4, j)th element of matrix C raised to
power k by cgf). From (14), it is clear that, for matrix C'

e (1)

Citit1) > 0 and Citi—1) >0, fori=1,2,,...,n4+1 (15)
(except, of course, the meaningless c1o and ¢(y4-1)(n+2))-
Now, by matrix multiplication, we have
JC) R (1) (1) (CORNEY)
Ci(i+2) = Cij Ciit2) = Ci(ir) gyt > 0 (16)
J
[using the nonnegativity of C' and condition (15)].
Similarly, we have
JRC) R JRCVMC @ (D
z(z 2) 1] j(z 2) = Cz(z 1) (z 1)(i—2) > 0. (17)

J

The aforementioned argument acts as the basis step of our induction.
Now, assuming that j > ¢ and cl(.;m >0, we now prove that

(m+1)
Cig41y > 0-
We have
(m+1) _ (m) (1) (m) (1)
G+ = 2 Cik GGy = Cij gy >0 (18)

k

(using the nonnegativity of C', condition (15), and the induction
hypothesis).
Similarly, now, we assume that j < ¢ and cg-n) > 0 and proceed to

prove that CEZTFB > 0.
We have
(m+1) _ (m) (1) (m) (1)
G- T 2%k GGy Z G CGG-n >0 (19)

k

(using the nonnegativity of C, condition (15), and the induction
hypothesis).

We can repeat the procedure to prove that, for each (4, 7) (satisfying
i # 7), there exists some integer k such that c(k) > 0.

Lastly, for ¢ = j, we have

This completes our inductive argument to prove that, for each (i, j),
there exists an integer k£ such that c(k) > 0. Hence, matrix C' is
irreducible.

Lemma 5: There is a one-on-one correspondence between the
eigenvalues of matrices B and C, and the correspondence is given by

¢ =7(pc —1). (20)
Proof: We have
1
C=—(B+~I
¥( +1)
éc—qﬁcf—W{B V(pc — 1)1}

det(C — b 1) = %.det B — (60 — 1)1].

Now, the eigenvalues of C' are given by the roots of det(C — ¢cl) =
0, which is equivalent to det(B — ¢pI) = 0, where, evidently, ¢ =
~v(¢c — 1), and hence, the lemma is proved.

Based on Lemmas 3, 4, and 5, we now proceed to prove an important
theorem regarding the stability of the biogeography system. We use the
eigenvalue criterion from the standard control theory [16], [17] for the
determination of system stability. ]

Criterion 1: Given the LTI system described by & = D.Z, let
o1, P2, ..., 0, denote the eigenvalues of square n x n matrix D.
The LTI system is stable in the sense of Lyapunov if Re(¢;) <0
for i =1,2,...,n, and those ¢; for which Re(¢;) = 0 are simple,
where Re(¢;) denotes the real part of ¢;. Otherwise, the LTI system
is unstable.

Theorem 3: The biogeography system described by (1)—(3) is
stable.

Proof: From Lemmas 3 and 4, it is clear that C' is nonnegative
and irreducible. From Perron—Frobenius theorem, if ¢ be the greatest
eigenvalue of C, then

min E ci; < g < max E Cij-
T 2
J J
However, the matrix C' being stochastic (by Lemma 3), it follows that

min E Cij = max E cij = 1.
o= i
J J

Thus, the greatest eigenvalue is ¢ =1, and according to the
Perron-Frobenius theorem, the eigenvalue ¢ = 1 is of multiplicity 1.
Evidently, ¢ = 1 is a simple eigenvalue of C, i.e., there is one and
only one eigenvalue of C' of magnitude 1. From Lemma 5, it is easy
to see that there is one and only one eigenvalue ¢ = 0 for matrix
B. Since B = AT, matrix A also has one and only one eigenvalue
of magnitude 0. Again, ¢ = 1 being the largest eigenvalue of C', we
have all eigenvalues |¢pc| < 1. However, from Lemma 5, we also have
¢5 = v(dc — 1). Thus, we conclude that, except only one single

CE?) = 571) ;1) > E(lz)+l) EBA)Z >0, foralli€{1,2,...,n+1}.  eigenvalue at 0, all other eigenvalues of B have negative real parts
3 and the same statement also holds for the eigenvalues of matrix A (as
— (Ao + ,LLo) )\0 0 0 e 0
H1 v = (A1 4 1) A1 0 0
1 0 M2 — (AQ +,LL2) )\2 0
C=-. . . 14)
v : . . :
0 0 Hn—1 7Y — (>\n71 +,U“n71) Anfl
0 0 Hn Y- (An + :Ll’n)
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Fig. 1. Equilibrium PDV for island biogegraphy dynamics with number of
species n = 150 with linear parameters from [7].

B = AT). Since there is only one eigenvalue of A at zero and all other
eigenvalues have negative real parts, by Criterion 1, the biogeography
system defined by (1)—(3) is stable (Proved).

Observation 1: It is important to remember that all the eigen-
values of C' (or A) may not be real. All that we have from the
Perron—Frobenius theorem is that |¢pc| < 1. Moreover, as ¢p =
Y(pc — 1), we have |¢pp + v| = v|¢c| < ~v. Thus, the eigenvalues of
matrix A will be located at the interior of a circle of radius - and
center at —v in the Argand plane. Fig. 1 shows the locations of the
eigenvalues of matrix A.

Theorem 4: Given the LTI biogeography model described by
(1)=(3), if the initial state £(0) is a PDV, then the equilibrium state
of the system is given by the eigenvector ¥ = [1;](n+1)x1, Which
corresponds to the zero eigenvalue of matrix A and

1
v = @1
nt1 IT Ag
1+ 3 =
=2 II pp
k=1
i—2
IT Ak
vi="""—uy, fori=2,3,...,n+1 (22)
IT far
k=1
Proof: By Definition 1, at equilibrium, we must have

(dZ(t)/dt) = 0at Z(t) = V.

Thus, if we denote the equilibrium state vector by o =
[V1,v2, ..., vni1]T, then we must have (23), shown at the bottom
of the page. Denoting the jth row of the corresponding augmented
matrix of the aforementioned system by I?;, we perform the following
elementary row transformations:

RJ*)R1+R2++RJ forj:1,2,3,...,n+1.

This results in the following equivalent system:

_)\0 1 0 cak 0 0
0 7A1 e TT] 0 0
. ¢ 0 7An71 Hn 8
0 o 0 0 0

(remembering \,, = o = 0)

and finally, solving the resulting equivalent system of equations,
we have

vy =20, 4.1)
H1
Vg = ﬁllg (242)
2
)‘.nfl '
Upil = VUn (24.n)
S

It is an easy recursion to solve, with the result

i—2
I A
k=0
i—1
I p
k=1

v, = vy, fori=23,...,n+1.

However, since the initial state £(0) is a PDV and, by Theorem 1, the
equilibrium state ¥ will also be a probability vector, we must have

Zw:l.

i

(25)

This gives
1

vy =

S

n+1

1+ >
1=2

=N
<)
>
S

e

=N
-
T
£

o

=
i

Thus, v; = (T1,_2 A\, /T1, Y ju vy for i = 2,3,...,n+ 1 with vy as
evaluated before.

It is easy to observe that, since for the equilibrium state vector
v, A.V=0=0.7; thus, 7 is the eigenvector corresponding to the
eigenvalue ¢4 = 0.

Observation 2: From the linear control theory, it is easy to see that
if we have a system with one single-zero eigenvalue, then we have
more than one equilibrium point. In fact in this case, we will have a
line of equilibrium points, and the direction vector for this line is the
eigenvector associated to the eigenvalue zero [16], [17]. Consider, for
example, a simple system whose dynamics is expressed as

I dyy dio X1 -
. = . = D.Z(t).
[12} (d21 d22> |:1'2:| x( )

—(Ao + po) H1
. Ao —(A1 4+ )
dz(t) =AT=0= :
dt |. _ :
E(t)=0 .
0

0 0 U1
)
H2 0
s | =0 (23)
A71,72 _(Anfl + //Jnfl) Hn
0 An:l 7()\n + /Jn) Vi1
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If the two eigenvalues of matrix D are 0 and ¢, and if 7/; and 7, be
the eigenvectors associated with them, respectively, then the general
system response may be expressed as
Z(t) = k.20 .0y + ko.e®tl 0. (26)

Clearly, if ¢; < 0, as ¢ — oo, the system state vector converges to the
vector k.7 along the direction of the eigenvector 7/; corresponding
to the zero eigenvalue of D matrix. From Theorems 3 and 4, we
find that, since only one eigenvalue of matrix A is 0 and the rest
of the eigenvalues are negative, the biogeography system will also
have its equilibrium vector along the direction of the eigenvector
U = [Vi](n+1)x1 given by (21) and (22) for any initial PDV Z(0).

Observation 3: If in the equation system (23) we assume
vy =1 and, correspondingly, v; = HZ;ZO )\k/H;;ll py for i =
2,3,...,n+ 1, then also the vector ¥ remains an eigenvector of
matrix A corresponding to eigenvalue, but in that case, the equilibrium
PDV of the system would have been //X;v;, as evident from (21)
and (22). This observation is in complete agreement with [4, Th. 1],
in which it was proven using the singular value decomposition theory
[18]. In what follows, we focus on the nature of the equilibrium PDV.
Under two mild constraints, it can be proven that the equilibrium
PDV is unimodal. However, before we prove the unimodality of the
equilibrium PDV, we prove the following simple lemma. We first give
a definition of modal point that will be used in proving the unimodality
of the equilibrium PDV.

Definition 5: An index “k” is said to be a modal point of matrix A if

Ak—2 2> fe—1 Ap—1 < fli-

Lemma 6: For the system given in (2) and (3a) and (3b), there exists
one and only one modal point, subject to the constraints Ao > j1; and
)\n—l < M-

Proof: First, we prove that there must exist one modal point for
the system. We prove it by the method of contradiction. On the contrary
to the claim, suppose that there is not any modal point for the system.
Then, we have

Either A\, _2 > py—1, forall k,
Or \p—1 < g, forall k

but given that Ao > 1. Thus, only the first option is feasible, and we
must have
Ae—o > pg_1, forallk.

Now, putting £ = n + 1, we have \,,_; > u,, which contradicts the
given constraint. This means that there must exist a modal point for the
system. Now, we prove that the modal point for the system is unique.
We prove it also by the method of contradiction. On the contrary to
the claim, suppose that there are two modal points, namely, k1 and ko,
with ko > k1. Then, as per the definition of the modal points, we must
haveforl1 <i<k-—1

Ako—2 = Hhko—1 Aky—1 < [y 27
However, since ko > k1, we must have [from (3b)]
Phy—1 = Moy - (28)

Thus, combining (27) and (28), we have
Abg—2 = Mhko—1 = Mky > Agp—1-

This implies that Ap,_o > Ay, —1, and clearly, it contradicts (3a).
Hence, there is one and only one modal point for the given system

described by (2) and (3). Now, we prove the unimodality of the
equilibrium PDV in the following theorem.

Theorem 5: Given the system described by (2) and (3), and the
equilibrium PDV & = [1;](5,41) x1 as described in Theorem 4, if Ay >
prand A, 1 < fip,thenvy <wvp < oo <y > Vpgq >0 > Upad,
where k is the modal point of A.

Proof: According to the aforementioned lemma, there exists one
and only one modal point for A. If k& denotes the modal point, then
according to (3), A;—1 > A\p—o and p; < pp—q for 1 <i < k—1.
Moreover, from (24), we have
_ Aic1 > Ak—2
Vi i Hrk—1

Vi1

, forl<i<k-—1. (29)

Since k is the modal point, by definition, we have A\p_o > pig_1.
Combining the aforementioned results, we obtain v;; > v;, when
1<i¢<k-—1. When k <i<n, we can prove that v, < v; in a
similar way. Thus, the theorem holds. Fig. 1 shows the equilibrium
PDV for n = 150.

Observation 4: Theorem 4 implies that, for the LTI biogeography
dynamics, the equilibrium state (PDV) is symmetrical, and the modal
point is approximately n/2 under the conditions u; = \,,_; for i =
0,1,...,n. We note that the biogeography system studied in [7] sets
Wi = Ap—; =4/nfori=0,1,...,n, which satisfies this condition.

Remark 1: The BBO algorithm uses species count probabilities
to determine mutation rates. Through Lemma 6 and Theorem 5, we
mainly indicated that the equilibrium state has its components farther
from the modal point smaller than those near the modal point. Thus,
Medium species counts have high probabilities because they are near
the equilibrium point. This way, the unimodal characteristic of the
equilibrium PDV makes the mutation operation of BBO provide poorer
solutions (with low fitness) a chance of improving and at the same time
prevents the BBO algorithm from getting trapped in a local optimum.

IV. CONCLUSION

In this correspondence paper, we have first shown that setting the
initial state to a PDV ensures that the state remains a PDV for all
future time. Next, we have proven that, given the initial state vector is a
PDV, the general probability transition matrix A, not necessarily in the
form of (2), has sum of the elements in its each column equal to zero.
Then, we have calculated the bounds of the eigenvalues of the general
LTI system matrix using the concepts of Perron—Frobenius theorem.
Based on the bounds of the eigenvalues, the stability of the system
was inferred. We found the equilibrium state vector for the system as
a vector along the direction of the eigenvector associated with eigen-
value 0. We have also analytically demonstrated the unimodality of
the equilibrium PDV and outlined the distribution of the components
of the equilibrium state vector to provide a better understanding of the
effectiveness of the mutation operation in BBO. Future research may
focus on developing suitable Lyapunov energy functions [17] for the
stability analysis of the biogeography system. A Markov chain analysis
could also be undertaken to better understand the search mechanisms
of different variants of the BBO algorithm.

REFERENCES

[1]1 A. Wallace, The Geographical Distribution of Animals (Two Volumes).
Boston, MA: Adamant Media Corporation, 2005.

[2] C. B. Cox and P. D. Moore, Biogeography: An Ecological and
Evolutionary Approach, 8th ed. Hoboken, NIJ: Wiley-Blackwell,
May 2010.

[3] R. MacArthur and E. Wilson, The Theory of Biogeography. Princeton,
NJ: Princeton Univ. Press, 1967.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 2, MARCH 2011 337

[4] J.J. Morrone, Evolutionary Biogeography: An Integrative Approach With
Case Studies. New York: Columbia Univ. Press, Dec. 2008.

[S] M. V. Lomolino, D. F. Sax, and J. H. Brown, Eds., Foundations of
Biogeography. Chicago, IL: Univ. Chicago Press, Jul. 2004.

[6] J. Wu and J. L. Vankata, “System dynamics model of island biogeogra-
phy,” Bull. Math. Biol., vol. 53, no. 6, pp. 911-940, 1991.

[7]1 D. Simon, “Biogeography-based optimization,” IEEE Trans.
Comput., vol. 12, no. 6, pp. 702-713, Dec. 2008.

[8] A. P. Engelbrecht, Computational Intelligence, 2nd ed. Hoboken, NJ:
Wiley, 2007.

[9] S.Das, S. Dasgupta, A. Biswas, A. Abraham, and A. Konar, “On stability
of chemotactic dynamics in bacterial foraging optimization algorithm,”
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 39, no. 3, pp. 670—
679, May 2009.

[10] H. de Bruijn and P. M. Herder, “System and actor perspectives on so-
ciotechnical systems,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 39, no. 5, pp. 981-992, Sep. 2009.

Evol.

[11] A. Obeidi, D. M. Kilgour, and K. W. Hipel, “Perceptual stability analysis
of a graph model system,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 39, no. 5, pp. 993-1006, Sep. 2009.

[12] A. Graham, Nonnegative Matrices and Applicable Topics in Linear
Algebra. Hoboken, NJ: Wiley, 1987.

[13] H. Minc, Nonnegative Matrices. New York: Wiley, 1988.

[14] O. Perron, “Zur Theorie der Matrices,” Mathematische Annalen, vol. 64,
no. 2, pp. 248-263, 1907.

[15] G. Frobenius, Ueber Matrizen aus nicht negativen Elementen.
Berlin, Germany: Sitzungsber. Konigl. Preuss. Akad. Wiss, 1912,
pp. 456-4717.

[16] W.L. Brogan, Modern Control Theory. Englewood Cliffs, NJ: Prentice-
Hall, 1991.

[17] A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control
Theory, 2nd ed. New York: Springer-Verlag, Apr. 2005.

[18] G. Strang, Introduction to Linear Algebra, 3rd ed. Cambridge, MA:
Wellesley-Cambridge, 1998, sec. 6.7.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


