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Abstract

Anycast is an internet addressing protocol where multiple hosts share the same
IP-address. A popular architecture for modern Content Distribution Networks
(CDNss) for geo-replicated services consists of multiple layers of proxy nodes for
service and co-located DNS-servers for load-balancing among different proxies.
Both the proxies and the DNS-servers use anycast addressing, which offers the
simplicity of design and high availability of service at the cost of partial loss of
routing control. Due to the very nature of anycast, redirection actions by a DNS-
server also affect load at nearby proxies in the network. This makes the problem
of optimal distributed load management highly challenging. In this paper, we pro-
pose and evaluate an analytical framework to formulate and solve the load man-
agement problem in this context. We consider two distinct algorithms. In the first
half of the paper, we pose the load management problem as a convex optimization
problem. Following a Kelly-type dual decomposition technique, we propose a
fully distributed load management algorithm by introducing a new type of control
packets, called FastControl packets. This algorithm utilizes the underlying any-
cast mechanism to enable effective coordination among the nodes, thus obviating
the need for any external control channel. In the second half of the paper, we
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examine an alternative greedy load management heuristic, currently in production
in a major commercial CDN. We study its dynamical characteristics and analyze
its operational and stability properties. Finally, we critically evaluate both the al-
gorithms and explore their optimality-vs-complexity trade-off using trace-driven
simulations.

Keywords: Performance Analysis; Decentralized and Distributed Control;
Optimization

1. Introduction

With the advent of ubiquitous computing and web access, the last decade has
witnessed an unprecedented growth in Internet traffic. Popular websites, such as
bing. com, registers more than a billion hits per day, which need to be processed
efficiently in an online fashion, with as little latency as possible. Content Distri-
bution Networks (CDN) are de facto architectures to transparently reduce latency
between the end-users and the web-services. In CDNs, a collection of non-origin
servers (also known as proxies) attempt to offload requests from the main servers
located in the data centers, by delivering cached contents on their behalf [1]. Pop-
ular examples of internet services using CDN include web objects, live-streaming
media, emails and social networks [2]]. Edge servers with cached contents serve
as proxies to intercept some user requests and return contents without a round-trip
to the data centers. Online routing of user requests to the optimal proxies remains
a fundamental challenge in managing modern CDNs. Routing to a remote proxy
may introduce extra round-trip delay, whereas routing to an overloaded proxy may
cause the request to be dropped. Hence, one needs an efficient load balancing pol-
icy to utilize the resources optimally.

There are two major paradigms of load balancing algorithms in use today for cloud
systems and CDNss:

* (1) DNS-based load balancing [3l],[4], in which the users are directly routed
to a server by using its unique 1P-address.

* (2) Anycast-based load balancing [5],[6], in which internet routing proto-
cols, such as BGP, implicitly route the users to a server among a group of
servers sharing the same IP-address.

In the first category, the server loading information is monitored centrally and
users are redirected to a lightly loaded proxy. Although this architecture has the



advantage of having a fine-grained control over the incoming load to each proxy, it
requires centralized coordination among the nodes so that a user can be directed to
the least-congested proxy. Since proxies are geo-distributed throughout the globe,
it is difficult to implement a centralized load balancing scheme in real time due
to the high amount of control information exchange involved. Thus, DNS-based
load redirection mechanisms warrant considerable investments in infrastructures
[7].

To get around this issue, in this paper we consider load balancing algorithms be-
longing to the second category, i.e., Anycast-based load balancing. Our point of
focus will be FastRoute - a fully distributed state-of-the-art CDN belonging to
Microsoft Azure [8]]. This large-scale commercial strength CDN architecture al-
leviates the need for global coordination among the nodes, which makes it fast
and robust. It uses a greedy load balancing heuristic that we will describe subse-
quently.

Anycast-based load balancing is widespread in modern CDNs [9]]. In addition
to Microsoft Azure, other prominent CDNss using this technology include Amazon
AWS [10], and Google Cloud CDN [6]]. With anycast, multiple proxy servers, hav-
ing the same user-content, share the same IP address. Anycast relies on routing
protocols (such as BGP) to route service requests to any one of the Geo-replicated
proxies, over a cheap network-path [11]. Anycast-based mechanisms have the ad-
vantage of being simple to deploy and maintain. Being available as a service in
IPv6 networks, no global topology or state information is required for its use [12].

Although anycast routing can simplify the system design and provide a high
level of service availability to the end-users [13], it comes at the cost of partial
loss of routing control. This is because a user request may be routed to any one
of the multiple Geo-replicated proxies having the same anycast address. Since the
user-to-proxy routing is done by the routing protocols and is not under the control
of the CDN operator, the user request may end up in an already overloaded proxy,
deteriorating its loading condition further. Figure|T]illustrates the problem of load
management with Anycast.

There have been several attempts in the literature to cope up with the lack
of load-awareness issue with network layer anycast. Papers [14], [15] consider
“Active Anycast” where additional intelligence is incorporated into the routers
based on RTT and network congestion. It is specifically targeted to reduce pure
latency rather than server overload, thus yielding sub-optimal performance in a
CDN setting. Alzoubi et al. [16] formulate the anycast load management problem
as a General Assignment Problem, which is NP-hard. Jaseemuddin et al. [17]]
propose a new CDN architecture which balances server load and network latency
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Figure 1: An example of Anycast-enabled CDN. User 1 and 2 obtain the anycast IP address from
the DNS server (blue dotted arrow) and are then routed over the Internet either to Proxy 1 or to
Proxy 2 for service (red solid arrow). Note that both proxies have the same IP address (Anycast
addressing). The fraction of users landing on a given proxy is dictated by the Internet routing
protocols and is beyond the control of CDN operators. This lack of load-awareness often leads to
overload of certain proxies.

via detailed traffic engineering.

In the FastRoute architecture, the proxies are logically arranged in layers of
anycast rings, with each layer having a distinct Anycast IP address. See Figure 3]
for an example. The provisioned capacities of the proxies increase as we move
from the outer layers to the inner layers of the anycast rings. DNS is responsible
for moving the load across different layers by intelligently responding to users
with different anycast addresses. Each proxy is equipped with a co-located au-
thoritative DNS server. We will collectively refer to a proxy and its co-located
DNS server simply as a node. See Figure[2]and Figure [3|for a high-level overview
of the architecture.

An overload is said to occur when any proxy receives more service requests
than its processing capacity. Since DNS is the primary control knob in this archi-
tecture, each DNS server at a node is responsible for redirecting traffic to other
layers to alleviate overload in the co-located proxy. A fundamental problem with
this approach is that not all users, that hit a given proxy, can be redirected suc-
cessfully by the co-located DNS. This is because, due to anycast routing, DNS
path and the data-flow paths are independent. Hence, a user’s Local DNS (LDNS)
could be obtaining a DNS response from some authoritative DNS server in a node,
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Figure 2: Two FastRoute CDN nodes with their corresponding co-located DNS and Proxy servers.
Note that, although the user gets served by the proxy at Node 2, it obtains the anycast IP address
from the DNS server at Node 1. Thus, in the event of an overload, this user cannot be redirected
from node 2 by altering the DNS response from the co-located DNS server at node 2.

which is different from the DNS server co-located with the proxy which the user
hits. An example is shown in Figure 2] Hence, intuitively, the ability for a DNS
server at a node to control overload at the corresponding co-located proxy depends
on the fraction of oncoming traffic to the proxy that is routed by the co-located
DNS server to the node itself. Informally, we refer to the above quantity as the
self-correlation [8] of a given node. A formal definition of self-correlation in this
context will be given in Section 2]

Poor self-correlation could impair a node’s ability to control overload in iso-
lation. Hence, successful load management in layered CDN should involve coor-
dinated action by DNS servers in multiple nodes to alleviate overload. Thus, the
problem reduces to the DNS plane determining the appropriate offload or redirec-
tion probabilities at each node to move traffic from overloaded proxies to the next
layer. This control-decision could be based on a variety of information such as
load on each proxy, DNS-HTTP correlation etc. From a practical point of view,
not all of these quantities are easily measured and communicated to wherever
they are needed. Thus a centralized solution is not practically feasible and the
challenge is to design a provably optimal, yet completely distributed load man-
agement algorithm.

A major drawback of the current FastRoute architecture is that it uses a heuris-
tic offloading policy with no optimality guarantees. In particular, it has been



reported in [9] that this heuristic often (for ~ 20% of the users) leads to an
uncontrollable-overload situation, which needs expensive manual intervention to
recover from. Also, from our numerical simulation results in Figure (9), we will
see that even in the underloaded condition the delay performance of FastRoute is
far from the optimal.

Our key contributions in this paper are as follows:

* Insection[2] we present a simplified mathematical model for DNS-controlled
load management in modern anycast-based CDNs. Our model is general
enough to address the essential operational problems faced by the CDN
operators yet tractable enough to draw meaningful analytical conclusions
about its operational characteristics.

* In section [3] we formulate the load management problem as a convex op-
timization problem and propose a Kelly-type dual algorithm [18] to solve
it in a distributed fashion. The key to our distributed implementation is the
Lagrangian decomposition and the use of FastControl packets, which ex-
ploit the underlying anycast architecture to enable coordination among the
nodes in a distributed fashion. To the best of our knowledge, this is the first
instance of such a decomposition technique employed in the context of load
management in CDNSs.

* In section 4] we consider an existing heuristic load management algorithm
used in FastRoute, Microsoft's CDN for many first party websites and ser-
vices it owns [19]. We model the dynamics of this heuristic using nonlin-
ear system theory and derive its operational characteristics, which conform
with the qualitative observations. To provide additional insight, a two-node
system is analyzed in detail and it is shown, rather surprisingly, that given
the “self-correlations” of the nodes are sufficiently high, this heuristic load
management algorithm is able to control an incoming load of any magni-
tude. Unfortunately, this theoretical guarantee no longer holds once this
correlation property is no longer in effect. In this case, the dual algorithm
proposed in section [3] performs better than the heuristic.

* In section[5] we critically evaluate relative benefits of the proposed optimal
and the heuristic algorithms through extensive numerical simulations. Our
simulation is trace-driven in the sense that we use real correlation parame-
ters collected over months from Microsoft Azure CDN []].
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Figure 3: A CDN architecture with two anycast layers. All nodes in layer 1 have the same anycast
IP-address. Solid arrows denote the DNS path of the users. The DNS of node 1 returns the anycast
address of L, to the user 1. As a result of anycast routing, the user 1 may get redirected to some
other node in L; for service (shown by the dashed arrows). The DNS of node 2 returns the anycast
address for L to the user 2. Thus, the user 2 is redirected to the data center.

2. System Model

Nodes and Layers: We consider an anycast-based CDN system consisting of

two logical anycast layers: primary (also referred to as L,) and secondary (also
referred to as Ly). See Figure [3 for the overall architecture. The primary layer
(Ly) hosts a total of N nodes, distributed worldwide. Each node consists of a
co-located DNS and a proxy server. See Figure [2| for a schematic diagram. The
proxies cache Web objects for faster delivery to the users. The i proxy has a
(finite) capacity of serving 7; requests per unit time. The secondary layer (L5)
contains a data center with practically infinite processing capacity. We assume
that both the proxy servers and the data center have the capability of serving the
requested objects (i.e., no cache misses).
For popular online services, such as Microsoft’s Bing, the nodes in L, are strate-
gically placed closer to the user base. As a result, the user-to-proxy round trip
latency is typically small. See [20] for optimal proxy placements and related
algorithms. On the other hand, as the users are spread worldwide, the average
geographical distance between the user base and the data center for L is typically
large. This results in significantly high user-to-data center round trip latency. The
overall response time for a user is the sum of the latency and the processing time
on the server (either proxy or the data center). Our objective is to devise a redirec-
tion mechanism for the user requests (explained below) that minimizes the overall
response time.



Anycast Addressing: As discussed earlier, all proxies in the primary layer
share the same IP-address (Z;) and the data center in L5 has a distinct IP-address
(Z5). This addressing scheme of multiple proxies sharing the same IP-addresses
i1s known as anycast addressing, which is widely in use for geo-replicated cloud
services [21], [[16]].

Control actions: When a DNS request submitted by a userE] arrives at a node
1 in Ly, requesting for the IP-address of a web-server, the co-located DNS server
at node ¢ may take one of the following two actions:

* (1) It returns the address Z, (which redirects the request to the data center
in Lz) Or,

* (2) It returns the anycast address Z; (which redirects the request to some
proxy in the primary layer L).

This (possibly randomized) binary action by the co-located DNS-server at node
© may depend on the following local variables available at node % :

1. DNS-influenced request arrival rate A; at node i’s DNS-server: [} Each
DNS request accounts for a certain amount of traffic load which is routed to
either Ly or Ly according to node ¢’s control actions. We normalize A; so
that each unit of A; corresponds to a unit of load. As an example, if 10%
of DNS responses at node ¢ returns the address Z,, then the total amount of
load shifted to the data center (L2) due to node ’s DNS is 0.1A4;.

2. User load arrival rate S;(t) at node i’s proxy: This quantity is evidently a
function of the arrival rates of DNS queries and redirection actions of other
nodes (quantified later in Eqn.(2)). The current load at node 1, i.e., S;(¢), is
locally known at the node :. The node < may incorporate this knowledge for
devising appropriate control actions.

Anycasting and inter-node coupling: When a DNS request arrives at the
node ¢ and the co-located DNS server responds with the Layer-1 anycast-address
7, the corresponding request may be routed to anyone of the N proxies (since
all of them have the same IP-address Z;). The particular proxy, where the request

'In the Internet DNS requests are actually generated by the Local DNS (LDNS) of the user and
are recursively routed to an authoritative DNS server. However, to keep the model and the analysis
simple, we will assume that individual DNS queries are submitted by the users themselves.

2We assume that A;’s are piecewise constant and do not change significantly during the tran-
sient period of the load management algorithms discussed here.



actually gets routed to, depends on the corresponding ISP’s routing policy, current
network congestions and many other time-varying factors. We assume that a typ-
ical query, which is routed to L; by the node ¢, is routed to node j’s proxy with
probability C;;. Clearly,

N
d Cy=1, Vi=12....N (1)

J=1

The correlation matrix C' may be determined empirically by setting up an experi-
ment similar to the one described in [22]].

In the ideal case where the nodes have perfect self-correlations, we have C' ~
I, where I is the N x N identity matrix. In this case, the control decisions of
the nodes do not interfere with each other and situations like Figure [2 rarely takes
place. However, as reported in [8], in real CDN systems with ever increasing
number of nodes, the system is far from ideal and the inter-node correlations are
rather significant. In this paper, we theoretically investigate the consequences that
arise from non-negligible inter-node correlations and design an optimal control
strategy for mitigating overload.

System Equations: Assume that, due to the action of some control strategy
7, the co-located DNS at node i randomly redirects 1 — 27 () fraction of incoming
DNS queries to Layer Ly at time ¢ (0 < z7(¢) < 1). Thus it routes z7 () fraction
of the incoming requests to different proxies in the layer ;. Hence the total load
arrival rate, S;(t), at node i’s co-located proxy may be written as

N
Si(t) =) CpAu(t), Vi=1,2,... N (2)
j=1

Definition 2.1 (Local Control). A control strategy m for DNS redirection is called

local if it can be represented by a collection of control maps © = | a7 (-),i =

1,2,... ,N), with T : Qf xt — [0, 1] where Q) is the set of all local observables
at node 1 up to time t.

Formally, our objective is to design an efficient local control strategy to avoid
overload in the network.



3. An Optimization Framework

3.1. Motivation

The central objective of a load management policy in our setting is to redi-

rect the minimal amount of traffic to the Layer 2 (due to high round-trip latency),
without overloading the primary layer L, proxies (due to their limited capacities).
Clearly, these two objectives are in conflict with each other and we need to find
a suitable operating point. The added difficulty, which makes the problem fun-
damentally challenging is that each node is an autonomous agent and takes its
redirection decisions based on its local observables only. As an example, a sim-
ple greedy heuristic for node < would be to redirect requests to L (i.e. decrease
x;(t)) whenever its co-located proxy is overloaded (i.e., S;(t) > T;) and redirect
requests to L; (i.e., increase x;(t)) otherwise. This policy forms the basis of the
greedy control strategy proposed in [8].
Although this simple greedy strategy seems to be appealing for large-scale deploy-
ment, we next show that, with significant cross-correlations among the nodes, this
heuristic could lead to an undesirable uncontrollable overload situation, with a
significant performance loss. This motivates us to design a more effective dis-
tributed load management algorithm, which we undertake later.

3.2. Locally Uncontrollable Overload: An Example

Consider the two-layered CDN in Figure[d], which hosts only two nodes a and b
in the primary layer. DNS request arrival rates to the nodes a and b are A, = 1 and
Ap = 1. Suppose the processing capacities (also referred to as thresholds) of the
co-located proxies are 7, = 0.7 and 7, = 0.7 respectively. Using the correlation
parameters [C;;] as shown in Figure 4] the loads at the co-located proxies can be
found as follows:

Sa(t) = 0.1z,4(t) + 0.514(¢) 3)
Sp(t) = 0.924(t) 4 0.5x(t) 4)

Since 0 < z,4(t), xp(t) < 1, it is clear that under any control policy x(t) the
following holds

S,(H) <01x1405x1=06<07=T, Vt>0

Thus, the proxy at node a will be under loaded irrespective of the load manage-
ment policy 7 in use. Consequently, under the greedy heuristic the co-located
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Figure 4: A two-node system illustrating locally uncontrollable overload at the node b

DNS-server at node a will steadily increase its L, redirection probability x,(t)
such that z,(t) * 1 in the steady state (note that, node a acts autonomously as
it does not have node 0’s loading information). This, in turn, overloads the co-
located proxy in node b because the steady state user load at proxy b becomes

Sp(00) = 0.92,(c0) + 0.524(00)
= 0.9 x 1+ 0.524(c0)
> 09>07=1T,.

Since node b is overloaded in the steady state, under the action of the above
greedy heuristic, it will (unsuccessfully) try to avoid the overload by redirect-
ing the incoming DNS queries to the secondary layer, as much as it can, by let-
ting () \, 0. Thus, the steady state operating point of the algorithm will be
zq(00) = 1, 2(00) = 0, with node b overloaded. It is interesting to note that poor
self-correlation of node a (C,, = 0.1) causes the other node b to overload, even
under the symmetric DNS request arrival patterns. Also, this conclusion does not
depend on the detailed control mechanism of the offload probabilities (viz. in-
stantaneous values if &1 (¢) and @5(t)). Since the overload condition at the node
b cannot be overcome by the isolated autonomous action of node b itself, we say
that node b is facing a locally uncontrollable overload situation.

From the point-of-view of the entire system, the above situation is extremely in-
efficient, because a large fraction (45% in the above example) of the incoming
requests either gets dropped or severely delayed due to the overloaded node b.
This poor operating point could have been potentially avoided if the nodes could
coordinate their actions, instead of acting greedilyﬂ It is not difficult to realize that

3 Another trivial solution to avoid overload could be to offload all traffic from all nodes to Lo,
ie. z;(t) = 0,Vi, Vt. However, this is highly inefficient because it is tantamount to not using the



the principal reasons responsible for the locally uncontrollable overload situation
in the above example are as follows:

* (1) Distributed control with local information

* (2) Poor self-correlation of node a (C,, = 0.1)

The factor (1) is fundamentally related to the distributed nature of the system
which warrants coordination among the nodes. In our proposed algorithm [_2]
we address this issue by introducing the novel idea of FastControl packets. This
strategy does not require any explicit state or control information exchange and
uses the anycast mechanism to its advantage.

Regarding the factor (2), we intuitively expect that the greedy heuristic should
work well if the self-correlations of the nodes (i.e. C;;) are not too small. In this
favorable case, each node controls a major fraction of the load coming to it. In
section 4] we return to a variant of the local heuristic used in FastRoute [8] and
derive analytical conditions under which the above intuition holds good.

In the following section, we take a principled approach and design an iterative
load management algorithm, which is optimal for arbitrary system parameters
(A, C). It will be shown that it is enough for each node ¢ to know its own local
DNS and user load arrival rates (i.e., A; and S;(t) respectively) and the entries
corresponding to the ™ row and column of the correlation matrix C (i.e., C;., C.;),
to achieve the optimal operating point. No non-local knowledge of the dynamic
loading conditions of other nodes is required for implementing the algorithm.

3.3. Mathematical formulation
Consider the following optimization problem:

N
Minimize  W(x, S) = Z (9:(S:) + hi(z:)) 5)
i=1
Subject to,
N
Sz' = ZCjiij]H Vi = 1,2,...,N (6)
j=1

proxies in the Primary layer L at all.
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Discussion. The first component of the cost function, ¢;(5;), denotes the cost for

serving S; amount of user requests by the i proxy in Layer I per unit time.
Clearly, this cost component grows rapidly once the load in a proxy is close to
its processing capacity, i.e. S; = T; and it becomes infinite when the proxy is
overloaded. As an example, the cost g;(-) may be taken to be proportional to the
average aggregate queuing delay for an M/ /G/1 queue with capacity T; [23]] given
as follows:

2, WS <T
9:(Si) = T (7)

oo, otherwise

Here 7, is a positive constant, denoting the relative cost per unit increment in
latency.

The second component of the cost function h;(z;) denotes the cost due to round-
trip latency of requests routed to the Data center (Ls). As an example, in a popular
model [24], the delay incurred by a single packet over a congested path varies
affinely with the offered load. Since the rate of traffic sent to the secondary layer
by node i is A;(1 — x;), according to this model, the cost function h;(z;) may be
taken as follows

where d; is the propagation delay from the node i to the data center and ; and ;
are suitable positive constants. A typical plot of the cost-surface for the case of a
two-node system as in Figure d]is shown in Figure [3

The constraint set X = [0, 1]V represents the N-dimensional unit hypercube
in which the (controlled) redirection probabilities must lie. The set > captures
the capacity constraints of the proxies, e.g., if the proxy ¢ has capacity 7; then we
have

ET:{SSZSE,VZ:Lz,,N}

For technical reasons, the functions g;(-), h;(-) are assumed to be closed, proper
and strictly convex [25]. We also assume the functions g;(-) to be monotonically
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Figure 5: (a) A typical plot of cost-surface for a two-node system as a function of their redirection

probabilities z1,22(0 < 21,22 < 1) and (b) the associated level-sets of the cost function.

increasing. As a result, we can replace the equality constraint (6) by the following
inequality constraint, without loss of optimality

N

ZCjiAjl’j < SZ', Vi = 1,2,...,N (9)
j=1

The reason being if the optimal S} is strictly greater than the LHS in (9], we can
strictly (and feasibly) reduce the objective value by reducing S} to the level of
LHS in (9). This leads to a contradiction.

Thus, the above load management problem is equivalent to the following opti-
mization problem P; :

Minimize

W(x, 8) =310, (9:(Si) + hilx:))
Subject to,

N
ZCjiijj < SZ', Vi = 1,2,...,N

j=1

reX,SeXy,

(10)

(11)

where, X = [0, 1N and Xy = {S : S, < T};,Vi=1,2,...,N}.




Since with the above assumptions, the objective function and the constraint
sets of the problem P, are all convex [25], we immediately have the following
lemma:

Lemma 3.1. The problem P is convex.

Hence a variety of optimization methods [26]] may be used to solve the prob-
lem P, in a centralized fashion. However, our objective is to find a distributed load
balancing algorithm running at each node, which collectively solves the problem
P; with locally available loading information only. This problem is explored in
the next subsection.

3.4. The Dual Decomposition Algorithm

In this section, we derive a dual algorithm [18]], [27], [28] for the problem
P; and show how it leads to a distributed implementation with negligible control
overhead.
By associating a non-negative dual variable y; to the i constraint in (T0) for all
1, the Lagrangian of P, may be written as follows:

/J(:c,S,u):Z(gi(Si) —l—Z( (z:) + Az Z,u] U) (12)

7=1

This leads to the following dual objective function [25]]

D(p) = we)%%fezTE(x’ S, ) (13)
We now exploit the separability property of the dual objective (12) to reduce the
problem (13)) into following two one-dimensional sub-problems:

1 = nt, (a5 = s,

(14)
xi(p) = inf (hz(%) + Aiﬂi(ﬂ)xi),

0<z; <



where the scalar (;(p) is defined as the (scaled) linear projection of the dual-
vector p on the i row of the correlation matrix, i.e.

N
Bi(p) =Y 1;Ciy = Cl'm, (15)
j=1

and C; is the i™ row of the correlation matrix C.

Example:
The optimal solutions to one-dimensional problems in Eqns. (14)), for the cost
function given in (7) and (8), can be obtained in closed form as follows:

§? (1) = Ty max (o, - \/Z:) (16)

1, ifey >0
xf(u) =q1+4+ ;;ii, if co <0 and 2c1; > —cCy; (17)

0, o.w.

and,

where C1y = AZQz and Co; = 91dz — Bl([,l;)

Discussion. The scalar 3;(p) couples the offload decision of node 7 with the state
of the entire network through Eqn. (I4). Once the value of §;(u) is available
to the node ¢, the node has all the required information at its disposal to locally
solve the corresponding sub-problems (14), for a fixed value of p. The solutions
of these one-dimensional sub-problems may even be obtained in closed form in
some cases. Also, note that 3;(u), being a scalar, is potentially easier to com-
municate than the entire N-dimensional vector p. In sub-section [3.6] we exploit
this fact and show how this factor 5;(p) may be made available to each node i
on-the-fly.

With the stated assumptions on the cost functions, there is no duality gap [25]].
Convex duality theory guarantees the existence of an optimal dual variable pt* > 0
such that, the solution to the relaxed problem (14)), corresponding to p*, gives the
optimal solution to the original problem P;. To obtain the optimal dual variable
p*, we solve dual P} of the problem P, given as follows

Problem P7:



Maximize D(u) (18)
p=>0

The dual problem P7 is well-known to be convex [25]. To solve the problem
P}, we use the Projected Super-gradient algorithm [29], which will be shown to
be amenable to a distributed implementation.

At the k™ step of the iteration, a super-gradient g(u(k)) of the dual function D ()
at the point g = p(k) is given by 0D (u(k)) = S°(k)—S(k) [23], where S9 (k)
is the observed rate of arrival of incoming user load at the proxy of node ¢, i.e.,

N
S (k) = Cidjas(k), (19)
j=1

and x; (k) and S; (k) are the primal variables obtained from Eqn. (14), evaluated
at the current dual variable po = p(k). Following a projected super-gradient step,
the dual variables p(k) are iteratively updated component-wise at each node ¢ as
follows:

1) = (j) + 0 (S25(0) = 5:(4) ) 0)

Here o is a small positive step size constant, whose appropriate value will be
given in Theorem (3.3). Since the system parameters might vary slowly over
time, a time-invariant algorithm is practically preferable. Hence, we chose to use
a constant step-size «, rather than a sequence of diminishing step-sizes {oy }x>1.
The basic centralized version of the optimization algorithm is summarized in Al-
gorithm In the next section, we will derive a distributed version of the dual
algorithm.



Algorithm 1 A Centralized Load Management Algorithm
1: Maintain Dual variables { (k) }r>1.
2: Initialize: p(1) < 0
3: fork=1,2,3,...do
4:  for each node i do

50 Bilw(k) < 5L Cigp (k)
6: Compute the current primal variables:
Si(k) it (gi(S0) = i(k)S:)
7: Compute the current load:
N
S (k) « Y ChiAja;(k) 21)
j=1
8: Update the dual variables:
ik +1) ¢ (k) + a(SP™ (k) — Si(k)) ™
9:  end for
10: end for

3.5. Convergence of the Dual Algorithm

To show that the proposed dual algorithm converges to the optimal solution,
we first analyze the super-gradients g(pu(k)):
N N
(k) = (1) = 50 = (3 Cours(h) = 50
j=1

i=1

The following technical lemma is the key to the convergence result:

Lemma 3.2. If the total external DNS-request arrival rate to the entire sys-
tem is bounded by Apax (i.e. Y ; A; < Anax) and the maximum processing-
capacity of individual proxies is bounded by T.y (i.e. T; < Tiax, Vi) then,




forallk > 1

lg(m(E))||2 < A%, + NT2 . (22)

PROOF. See Appendix [8.1]

Upon bounding the super-gradients, the convergence of the dual algorithm
follows directly from Proposition 2.2.2 and 2.2.3 of [26]. In particular, we have
the following theorem:

Theorem 3.3. For a given € > 0, let the step-size o in Eqn. (20) be chosen as

_ 2¢
O = Then,

* The sequence of solutions, produced by the dual algorithm described
above, converge within an e-neighborhood the optimal objective value
of the problem P;.

* The rate of convergence of the algorithm, around the e-neighborhood of
the optima, after k-steps, is given by c/\/k where ¢ ~ O(\/N).

The above result states that the rate of convergence of the dual algorithm de-
creases roughly at the rate of ©(v/N), where N is the total number of nodes in
the system. This is expected as more nodes in the system would warrant more
inter-node coordination to converge to the global optimum.

3.6. FASTCONTROL Packets and Distributed Implementation

We now examine the centralized algorithm provided in|(l|in detail. We notice
that the variable S?*(k) in step (7) is simply the currently observed load at node
¢ and is known to the nodes locally. Hence, apart from step (5), which requires
linearly combining the dual variables from different nodes, all other steps of the
algorithm may be performed locally. Thus, if the value of the coupling factors
Bi(p(k)) are made available to node 4, the dual algorithm can be implemented
in a completely distributed fashion. To accomplish this, we now introduce the
novel idea of FASTCONTROL packets. In brief, it exploits the underlying anycast
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mechanism for in-network, on-the-fly computation of the coupling factor 5;(p(k))
(Eqn. (15)) for all <.

General Descriptions. FASTCONTROL packets are special-purpose control pack-
ets (different from the regular data packets), each belonging to any one of N
distinct classes, which we refer to as categories. The category of each FASTCON-
TROL packet is encoded in its packet header and hence it takes extra log(V) bits to
encode the categories. Physically, these control packets originate from the users
and are monitored by the proxies. However, the rates at which these packets are
generated, are controlled by the DNS servers of the nodes 7 and are proportional
to the dual variables y;(k), by a mechanism detailed below.

Generation of FastControl packets. These packets are generated in a controlled
manner by using a Javascript embedded in responses to user DNS-requests (simi-
lar to how data was generated to calculate the C' matrix offline [8]). The Javascript
forces users to download a small image from a URL that is not affected by the load
management algorithm. DNS-servers in each node are configured to respond back
with anycast IP address for the primary layer (i.e. Z) for this special DNS-query.
The use of various categories of FastControl packets will be clear from the de-
scription of the following distributed protocol used for determining 3;(u(k)):

» At step k, the DNS server of each node 7 forces generation of FASTCON-
TROL packets of category j (through its response to DNS-queries) at the
rate

Cii .
Note that this step is locally implementable at each node, since the value of
the dual variable y;(k) is locally available at the node i. Here v > 0 is a
fixed system parameter, indicating the rate of control packet generation.

* At each step k, each node ¢ also monitors the rate of reception of FAST-
CONTROL packets of category 7, denoted by R;(k), at its co-located proxy.
Using equation (23), the total rate of reception R;(k) of i category FAST-
CONTROL packets at node 7 is obtained as follows

N

N
Cii
Ri(k) = eri(k)Cji:ij(k:)C—iji
j=1 j=1 J

= Bi(pn(k))
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Figure 6: The i node implementing the dual algorithm

Thus,

Bi(n(k)) = —Ri(k) (24)

Hence, the value of ;((k)) at node i can be obtained locally by monitoring the
rate of receptions of FASTCONTROL packets at the co-located proxy. A complete
pseudocode of the algorithm is provided below. See Figure (6] for a schematic
diagram of a node implementing the algorithm.
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Algorithm 2 Distributed Dual Decomposition Algorithm Running at Node ¢
1: Initialize: p;(0) < 0
2: fork=1,2,3,...do
3:  Monitor A;(k), S?%(k), Ri(k);
4. Set ﬁz(k}) — %Rz(k),
5. Update the Primal variables:

Si(k) oL (9:(Si) — (k) S:)

6:  Update the Dual variable:
pilk +1) = (ui(k) + (P (k) = Si(k)) "

7:  Via DNS-response, force users to generate FASTCONTROL packets of category j,
destined to L1, at the rate

Cji :
rig(b+1) =k + 1) 5", ¥ji=12...,N
ij

8:  For an incoming DNS-query, respond with the anycast IP-address for L; with
probability x; (k) and IP-address for Lo with probability (1 — z;(k)).
9: end for

From the above description of the algorithm, we can make the following in-
teresting observations:

* The full knowledge of the matrix C' at node i is also not necessary. It is
sufficient that node 7 knows the i row and column of the matrix C.

* The optimality of the algorithm does not depend on the diagonal domi-
nance property of the correlation matrix C, an essential requirement for the
greedy heuristic (discussed in the next section) to work reasonably well.

* The parameter v in Eqn. (23)) is directly related to the amount of control
overhead required for the distributed algorithm.

This completes the description of the proposed load management algorithm,
which is completely distributed and provably optimal. In the following section,
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we concentrate our attention on the load management heuristic used in FastRoute
and evaluate its performance. We will numerically compare the relative benefits
of these two algorithms in Section 3]

4. The Greedy Load Management Heuristic

In this section, we focus exclusively on a greedy distributed load management
heuristic, which is also implemented in FastRoute [[8], a commercial two-layered
CDN. This heuristic algorithm ignores inter-node correlations altogether and as-
sumes that each node fully controls the oncoming traffic to it. Thus, when a proxy
is overloaded, the co-located DNS server modifies its DNS response to redirect
more traffic to the data center (L) and vice versa. This simple mechanism is
reported to work well in practice only when there is a high correlation (60-80%)
between the node receiving the DNS query and the node receiving the correspond-
ing request. However, in the case of sudden bursts of traffic, e.g., Flash Crowds
[30], this greedy heuristic results in an uncontrollable overload situation, warrant-
ing manual intervention [8].

Algorithmic challenges: Equipped with only local information at its disposal,
the DNS server faces the following dilemma: offload too little to the data center
and the co-located proxy, if overloaded, remains overloaded; offload too much to
the data center and the users are unnecessarily directed to the remote data center
and receive a delayed response, due to its high round-trip latency. The coupling
among the nodes due to inter-node correlation renders this problem highly chal-
lenging and gives rise to the so-called uncontrollable overload, discussed earlier
in section[3.2]

A pseudo-code for FastRoute’s heuristic algorithm is provided below. An ex-
plicit control mechanism modeling the heuristic will be given in section 4.1

Algorithm 3 Decentralized greedy load management heuristic used in FastRoute
[8], running at the node ¢
I: for t=1,2,3,... do
2: if the i™ proxy is under loaded (S;(t) < T;) then
3 increase x;(t) proportional to —(.S;(t) — T;)
4 else
5: decrease x;(t) proportional to (S;(t) — T;)
6
7

end if
: end for
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Motivation for analyzing the heuristic: The optimal algorithm of section 3] re-
quires the knowledge of the correlation matrix C' and needs to utilize additional
FASTCONTROL packets for its operation. In this section, we analyze the per-
formance of the greedy heuristic, currently implemented in FastRoute [8l], which
does not have these requirements. Since this heuristic completely ignores the
inter-node correlations (given by the matrix C), it cannot be expected to achieve
the optimum of the problem P, in general. Instead, we measure its performance
by a coarser performance-metric, given by the number of proxies that face an un-
controllable overload condition (refer to section [3.2) under its action. Depending
on target applications, this metric is often practically good enough for gauging the
performance of CDN systems.

4.1. Analysis of the Greedy Heuristic

As before, let x;(t) denote the probability that an incoming DNS query to
the node ¢ at time ¢ is returned with the anycast address of the primary layer L;.
Hence, the rate of incoming load to the proxy ¢ at time ¢ is given by,

N
Si(t) =Y Crdjr(t), i=123,... N (25)
j=1

The above system of linear equations can be compactly written as
S(t) = Bx(t), (26)
where,
B = C'diag(A). (27)

Let the vector T' denote the service rates (or, thresholds) of the proxies. As

discussed before, FastRoute’s greedy heuristic continuously monitors the overload

metric (;() &« S;(t) — T;. Tt feasibly reduces z;(t) if (;(t) > 0 and feasibly

increases x;(t) otherwise. The following simple control mechanism complies with
the above general principle, which we analyze subsequently:

dx;(t .

:Ud—t() — —BR(x:(t))(Bx(t) = T), Vi. (28)
The factor R(x;(t)) = z;(t)(1 — z;(t)) is called the Regularizer. The regularizer
has the property that R(0) = R(1) = 0 and it is strictly positive in the open-
interval (0, 1). This nonlinear pre-factor is necessary for confining the dynamics
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of x(t) to the N-dimensional unit hypercube 0 < x(¢) < 1, ensuring the fea-
sibility of the control @[ﬂ Although other choices of the functional form of
the regularizer are possible, we choose the above function for its simplicity. The
scalar # > 0 is a sensitivity parameter, relating the robustness of the control strat-
egy to the local observations at the nodes.

The following theorem establishes soundness of the control (28):

Theorem 4.1. Consider the following system of ODE
Ei(t) = —R(xi(t))(Be(t) = T)i, Vi (29)

where R : [0,1] — Ry is any C! function, satisfying R(0) = R(1) = 0.

Let (0) € int(H), where H is the N-dimensional unit hypercube [0, 1]V.
Then the system 29) admits a unique solution x(t) € C*, such that, z(t) €
H,Vt > 0.

PROOF. See Appendix [8.2]

The following theorem reveals an interesting feature of the greedy algorithm. It
states that, along any periodic orbit of the system dynamics, the average load at
any node 7 is equal to the threshold 7; of that node.

Theorem 4.2. Consider the system (28)) with possibly time-varying arrival
rate vector A(t), such that, the system operates in a periodic orbit. Then the
time-averaged user load on any node 1 is equal to the threshold T; of that
node, i.e.

- [ s =1, v (30)
0

where the integral is taken along a periodic orbit of a period T.

“Remember that z;(t)’s, being probabilities, must satisfy 0 < z;(¢) < 1,Vt,Vi
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PROOF. See Appendix

4.2. Avoiding Locally Uncontrollable Overload

Having established the feasibility and soundness of the control mechanism
(28), we return to our original problem of avoiding locally uncontrollable over-
load, described in Section @ In the following, we derive sufficient conditions
for the correlation matrix C' and the DNS arrival rate vector A, for which the sys-
tem is stable, in the sense that no locally uncontrollable overload situation takes
place. For a fixed correlation matrix, the subset of arrival rates, for which the
system remains stable under the greedy heuristic, is called its stability region 1.

Characterization of the Stability Region 11¢

For a fixed correlation matrix C, we show that if the arrival rate vector A lies
within a certain polytope II¢, the system is stable in the above sense. The formal
description and derivation of the result are provided in Appendix [8.4] which in-
volves linearization of the ODE (28) around certain fixed points. Here we outline
a simple and intuitive explanation of the stability region Il¢.
We proceed by contradiction. Suppose that node ¢ is undergoing a locally uncon-
trollable overload at time ¢. Hence, by definition, the following two conditions
must be satisfied at node ¢

Sic0) =T, > 0, (31)
0.

zi(00) = (32)

Here, Eqn. (31)) denotes the fact that FastRoute node i is overloaded in the steady
state. Eqn. (32)) denotes the fact that this overload is locally uncontrollable, since
even after node i’s DNS-server has offloaded all incoming requests to L, (the
best that it can do with its local information), it is overloaded. Using Eqn. in
conjunction with and (32)), we have:

> CiiAjzi(o0) > T, (33)
JF#i
Since 0 < z;(c0) < 1, a necessary condition for uncontrollable overload at
node i is Z#i C;iA; > T,. Thus, if Z#i CjA; < T, then the locally uncon-
trollable overload is avoided at the node ¢ by the greedy heuristic. Taking into
account all nodes, we see that if the external DNS-query arrival rate A lies in the
polytope Il defined as

Mo ={A>0:) CuA;<T, Vi=12,... N} (34)
J#



27

then the locally uncontrollable overload situation is avoided at every node and the
system is stable.

Somewhat surprisingly, by exploiting the exact form of the control law (28)), we
can show that a two-node system (as depicted in Figure [)) is able to control DNS
arrivals A of any magnitude, under certain favorable conditions on the correlation
matrix C.

Special Case: Two-node System
Consider a two-node CDN discussed earlier in Section [3] (see Figure [)). Let
the correlation matrix C for the system be parametrized as follows:

Cla, ) = (1 o ] 1 p a) (35)

Then we have the following theorem:

Theorem 4.3. 1) The system does not possess any periodic orbit for any val-
ues of its defining parameters: A, C(«, ), T. Thus, the two-node CDN never
oscillates.

2)Ifa > % and > % then the system is locally controllable (i.e., no locally
uncontrollable overload) for all arrival rate-pairs (A, As).

3)Ifa< % and 8 < % then a sufficient condition for local controllability of
the system is A; < 1{—1& Ay < %

PROOF. The proof of part-(1) follows from Dulac’s criterion [31], whereas proof
for part-(2) and (3) follows from linearization arguments. See Appendix [8.5] for
details.

We emphasize that the part-(2) of the Theorem is surprising, as it shows that
the system remains locally controllable, no matter how large the incoming DNS-
request arrival rate be (c.f. Section [3.2) . The 2D vector field plot in Figure
illustrates the above result. In Figure a), the matrix C is taken to be one sat-
isfying the condition of part (2) of lemma [4.3] As shown, all four phase-plane
trajectories with different initial conditions converge to an interior fixed point
(x1(c0) > 0,22(c0) > 0).

For the purpose of comparison, in Figure [7{b) we plot the 2D vector field of a



28

Fig. 7(a) Fig. 7(b)
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Figure 7: 2D vector fields of a two-node system, illustrating locally controllable (Fig. 7(a)) and
locally uncontrollable (Fig. 7(b)) overloads.

locally uncontrollable system (e.g., the system in Fig. [). It is observed that
all four previous trajectories converge to the uncontrollable attractor (z;(oc0) =
1, 29(00) = 0). From the vector field plot, it is also intuitively clear why a peri-
odic orbit cannot exist in the system.

An Application of Theorem Consider a setting where, instead of making lo-
cally greedy offloading decisions, nodes are permitted to partially coordinate their
actions. Also assume that there exists a partition of the set of nodes into two non-
empty disjoint sets (G; and (5, such that, their effective self-correlation values
a(G1) and B(G3), defined by

D iecy 2jec, Cig D iey 2jecs Cis
alGy) = 1€l J 1 7 G, = 1eG2 7€G2
e (X
satisfy the condition (2) of Theorem ie. a(G) > 1, B(Gy) > 5. Then if the
nodes in the sets G; and (G5 coordinate and jointly implement the greedy policy,
then the system is locally controllable for all symmetric arrivals.

5. Numerical Evaluation

Simulation Setup:

We use operational FastRoute CDN to identify relevant system parameters
for critical evaluations of the optimal algorithm and the heuristic. Currently, Fas-
tRoute has many operational nodes, spreading throughout the world [8]. The inter-
node correlation matrix C' is computed using system-traces collected over three
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Figure 8: (a) Histogram plot of the measured self-correlation values (b) Empirical Cumulative
Distribution Function (CDF) of the measured self-correlation values. It is observed that there are
exactly four nodes with self-correlation (Cj;) value less than 0.5.

months. The histogram and empirical CDF plot of the measured self-correlation
values (obtained from the diagonal of the C' matrix) are shown in Figure 8]

From the Figure (3| (a), we observe that there are four nodes in the system with
self-correlation values less than 0.5. Taking our intuition from Theorem[4.3] these
nodes are potentially at the danger of becoming uncontrollable under the action of
the heuristic policy with high enough arrival rate. From our simulation result, we
will see that this intuition is indeed correct.

For comparing the performance, we use the cost functions given in Eqns. and
(8). The parameters appearing in the cost functions are chosen as follows

and the propagation delays d;s chosen i.i.d. at random from the uniform distri-
bution supported in [0, 1]. DNS query arrival rates A;’s are assumed to be i.i.d.
Poisson variables with expectation A. For each value of A, the simulation is run
Ng = 100 times while randomizing over both A; and d;.

We consider the following two scenarios:

Case I: Controllable Overload

First, we consider the case of small arrival rate, so that, the greedy heuristic
is able to control the overload. In other words, we restrict our attention to the
scenarios when none of the nodes are overloaded under the action of the greedy
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Figure 9: Comparing the performance of the greedy heuristic with the optimal algorithm under
no-overload condition (small arrival rate).

heuristic. As a result, the steady state objective value achieved by the greedy
heuristic is finite. We compare the performance of the greedy heuristic with the
optimal algorithm of Section [3]in Figure[9] From the plot, we can clearly see that
even in this favorable case, the optimal algorithm outperforms the greedy heuristic
by a factor of at least 2. This plot clearly underscores the potential performance
gain that CDNs can benefit from by switching to the optimal algorithm.

Case 11: Uncontrollable Overload

Next, we consider the scenario with high arrival rate, which is common in the
event of Flash crowds [30]. The performances of the CDN under the action of the
optimal and the heuristic algorithm are shown in Figure[I0] From the Figure[I0|(a)
we observe that under the optimal algorithm there is a steady increase in the cost
as the DNS arrival rate is increased. This is expected as system load increases
with more arrivals. However, the resulting cost remains finite always. This, in
turn, implies that none of the proxies are overloaded regardless of the arrival rate.
This is in sharp contrast with the performance of the system under the greedy
heuristic, shown in Figure [[0(b). Here, we plot the number of overloaded proxies
for different values of A, keeping all other system parameters the same. While the
greedy algorithm does yield an acceptable result for small values of A << T; =
0.7, we see that as many as four proxies undergo locally uncontrollable overload
for relatively large values of A.
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Figure 10: (a) Variation in the cost incurred by the optimal algorithm( \i/ith mean DNS arrival rate
A. (b) Average number of nodes undergoing uncontrollable overload condition under the action
of the greedy algorithm (Threshold 7; = 0.7 for all nodes). The total number of nodes in the
system included in this study is N = 48. Note that, since the optimal cost is finite, the number
of overloaded nodes under the optimal algorithm is zero. On the other hand, the greedy heuristic
incurs an infinite cost as some nodes are overloaded (see Eqn. (7).

Thus, depending on the computed correlation matrix C' and a projected bound of
the DNS-query arrival rate A, we can make an informed decision about the choice
of the algorithms to employ in a CDN and the inherent complexity-vs-optimality
trade-off it entails.

Saturation of number of uncontrollable nodes:

We observe from Figure @Kb), that the number of overloaded nodes saturates
(tends to 4) as the arrival rate is increased. This effect can be explained by ap-
pealing to Theorem From that theorem, we expect that the greedy heuristic
might fail to control overload in those nodes whose self-correlation value is rel-
atively small. Although the theorem is stated for a two-node system, the conclu-
sion of the theorem is conjectured to hold in general. We mentioned earlier that
in our simulation, there are exactly four nodes with self-correlation values less
than 0.5 (see Figure [§). Since other nodes have self-correlation values more than
this threshold value, the greedy heuristic successfully controls overload in other
nodes. This explains the saturation effect in Figure [T0(b).

6. Conclusion

In this paper, we extensively study the load management problem in modern
CDNs, which use anycast. We first formulate the problem as a convex optimiza-
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tion problem and propose a dual sub-gradient algorithm. To facilitate its practical
implementation, we introduce the novel idea of FASTCONTROL packets, which
effectively exploit the underlying anycast architecture. Next, we analyze the sta-
bility characteristics of a greedy heuristic, the de facto load management scheme
for anycast-based CDNs. From our analytical and simulation studies, we find that
the optimal algorithm significantly outperforms the heuristic. We also find oper-
ating points where the performance of the heuristic, although sub-optimal, does
not result in an uncontrollable overload scenario and may be acceptable. Thus an
informed choice between these two schemes may be made depending on the range
of system parameters and the desired optimality/complexity trade-off for a partic-
ular CDN. Future work would involve investigating the amount of FASTCONTROL
packets necessary for the dual algorithm to work in the presence of random packet
loss and delayed feedback. It would also be interesting to generalize the findings
of Theorem K.3[to more than two nodes.
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8. Appendix

8.1. Proof of Lemma
PROOF. We have,

N
lgell3 = D _(S™(k) — Si(k)) 37)
=1
N
< Z Sobs +ZS2 (38)
=1
N N
< 3 Z CyiAja; (k) + NT2,, (39)
=1 7=1
N N
< (D> 04+ NTZ,, (40)
i=1 j=1
N N
= (D43 Cu) + NTE,, (41)
7=1 =1
N
S (Z AJ) + NTI?laX (42)
7j=1
< AL+ NTZ, (43)

Here Eqn. (38)) follows from non-negativity of S and S;, Eqn. (39) follows
from the defining equation of S?bs and the constraint that S; < T; (viz. Eqn. (14)),
Eqn. follows from the constraint 0 < x; < 1, Vi, Eqn. follows from the
change of the order of summation and finally Eqn. follows from the fact that
C is a correlation matrix and hence its rows sum to unity (viz. Eqn. (I)).

8.2. Proof of Theorem

PROOF. First, we show that any solution of the system (if exists) must lie in
the unit hypercube H. We prove it via contradiction. On the contrary to the claim,
assume that for some solution of the system (28§)), there exists a component x;(-)
and a finite time 0 < 7 < oo such that z;(7) < 0. Since z;(+) is continuous and
x;(0) > 0, by intermediate value theorem, there must exist a time 0 < ¢y < T
such that z;(ty) = 0. Now consider the differential equation corresponding to
the ™ component of the system (29). We substitute for all other components
{z;(t),j # i} on the RHS of the following equation.
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ai(t) = —R(:ci)(z Byz;(t) =T)),  x(ty) =0 (44)

Since the vector x(t) is C! and the regularizer R(-) is assumed to be C', the RHS
of the equation (@4) is C'. Hence admits a unique local solution. However,
note that the following is a solution to (44))

This is because R(0) = 0. By uniqueness, is the only solution to (44)). This
contradicts the fact that ;(7) < 0. Hence x(¢) > 0,Vt > 0. In a similar fashion,
we can also prove that x(t) < 1,Vt > 0. This proves that all solutions to (28)
must lie in the compact set H.

To complete the proof, we observe that the RHS of the system is locally
Lipschitz at each point in the compact set H. Thus, the global existence of the
solution of (28)) follows directly from Theorem 2.4 of [32].

8.3. Proof of Theorem
PROOF. Let 7 be the period of the orbit. Consider the i differential equation

G(t) = —R(x;) (S(t) — T) (46)
R (S(t) — T;)dt (47)

Since z;(-) belongs to the interior of the compact set H, m does not have a

zero in the denominator for the entire orbit. Hence m 1s continuous and its

Riemann integral exists [33]. Integrating both sides from O to 7, we have

/0 ' RCZ;) = /O (Silt) - Tyt (48)

Let J(z;) be an anti-derivative of R%. Hence using the fundamental theorem of
calculus [33], we can write the LHS of as
Hai(r) = Hai0) = [ 8,0yt = o7, )
0

Since the orbit is assumed to have a period 7, we have z;(7) = x;(0). Hence
J(z;(7)) — J(2;(0)) = 0. Thus we have

_ 1 /7
0

T
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8.4. Formal Derivation of the Stability Condition

Let us write the system (28]) conveniently as & = F'(x). Consider a fixed point
7 of the system such that the k" node faces an uncontrollable overload condition.
By Hartman-Grobman theorem [31], it is enough to consider linearized version
of the system to determine the stability of fixed points. The first-order Taylor
expansion about the fixed point Z yields the following:

i~ F@) T e a) = T g

Where, az;;m) «—=z denotes the Jacobian [34] of the system (28)]) evaluated at the
fixed point x = T and B;; = C};A;. The second equation follows because T is
assumed to be a fixed point (and consequently F'(Z) = 0).

Next, we proceed to explicitly compute the Jacobian of the system (28)) at a given

point . Note that the i row of the system equation is given by

Fi(x) = —z;(1 — a;,-)(z Bijz; —T) (50)

Thus for ¢ # j, we have

OF;
an

and for ¢ = j, the diagonal entry is given by

gi T <xi(1 —)Bi+ (1= 22)()_ Bijz; = T))

J

- _ (xi(l — ;) By + (1 — 22;)(S; — T)) (52)

Since the node k is assumed to undergo an uncontrollable overload condition, we
necessarily have x;, = 0. Hence from Eqns and (52), in the k™ row of the
Jacobian matrix, the off-diagonal entries are all zero and the diagonal entry is
—(Sk —T). Hence if S, — T < 0, at least one eigenvalue of the Jacobian matrix
at the fixed point 7 is strictly positive and hence the fixed point 7 is unstable. This
implies that a sufficient condition to avoid uncontrollable overload at node k is
given by

> Cud; < Ty (53)
J#k
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where we have used the fact that x;(¢) < 1,V7 and x;, = 0. The derivation of the
sufficient condition for the absence of uncontrollable overload condition is com-
pleted by taking the intersection of hyperplanes (53) forall k = 1,2,...,N. &

8.5. Proof of Theorem

PROOF. part-(1) [non-existence of periodic orbits]

We use Dulac’s criterion to prove the non-existence of periodic orbits for the gen-
eral two-node system. For ease of reference, we recall Dulac’s criterion below :

Theorem 8.1 (Dulac’s criterion [31]). Let ¢ = f(x) be a continuously differen-
tiable vector field defined on a simply connected subset R of the plane. If there
exists a continuously differentiable, real-valued function g(x) such that V - (g)
has one sign throughout D, then there are no closed orbits lying entirely in D.

Now we return to the proof of the result. Let Hy = [0,1]? be the unit square,
where by virtue of theorem the trajectory of the two-node system lies for all
time ¢ > 0. Thus, it suffices to show that there does not exist any periodic orbit
in its interior H, = D. It is obvious that the region D is simply connected. Now
consider the following g(x) for application of the Dulac’s criterion,

1
g(z) = (54)

l‘lxg(]_ — Il)(l — 1’2)

It is easy to verify that g(«) is continuously differentiable throughout the region
D. We next evaluate the divergence

(55)

)= B )

xo(l—x9) (1 —29)

It is easy to verify that the term within the parenthesis is always strictly positive
throughout the region D. Hence, by Dulac’s criterion, there are no closed orbits
in D. This proves the result.

part-(2) and (3) [controllability of the system]

Let the arrival rates to node 1 and 2 be given by A; and A,. Let x; and x5 denote
the operating point of the system at the steady state. Our objective is to find
sufficient conditions on the arrival rate vector (A;, As), under which the operating
points (1, x2) such that either x;1 = 0 or x5 = 0 (i.e. full offload to Layer-II)
are avoided in the steady state. This will ensure that no uncontrollable overload
situation takes place in the system. First, we consider the fixed point

I = 07332 =1 (56)
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This fixed point will be stable if both the eigenvalues of the Jacobian matrix at
this point are negative. From Eqns. (5I)) and (52) we have the following two
conditions:

Sl>T,SQ<T
1.e.,
(1—(1)A2>T,6A2<T
1.e.,
T
<Ay < — 57
1-a 2553 (57)

Similarly, analyzing the stability of the fixed points around the point 1 = 1,29 =
0, we obtain that this fixed point will be unstable if

Sl < T, SQ >T
1.e.,
aAl < T, (1 — ﬁ)Al > T
1.e.,
T T
T A< =
13 <A< o (58)

Note that if « + 3 > 1, both the above regions and (58)) will be empty and the
fixed points (1,0) and (0, 1) will be always unstable. Thus, the operating point
will not converge to these undesirable fixed points in the steady state.

Now consider the (possibly feasible) fixed point (1, z2) such that

r1=0,5=T (59)
The above condition translates to,

x1=0,A18=T
T

—_— 60
0 (60)

1’1:0,1'2:
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This fixed point will be feasible provided %ﬁ < 1. The Jacobian matrix about
this fixed point is evaluated as

(9F(a:)‘ __( 1-8F~-T 0 )
ox ' Alﬁ(l — ALQB)BH A%ﬁ(l — A%B)Bm

From the Jacobian matrix above, we conclude that both of its eigenvalues are
negative provided the following two conditions hold

A2>%,B<%. (61)
Doing similar analysis around the fixed point (S; = 7', 25 = 0), we conclude that
the above fixed point will be stable for all arrival rates A; > L and a < 3.
Finally, to obtain efficient operating region for the system (with no uncontrol-
lable overload situation), we take union over stability region of all undesired fixed
points and take the complement of it. Hence, if o > %, g > % all the undesir-
able fixed points are unstable and hence the uncontrollable overload situation is
avoided for all DNS-request arrival rates A. This proves part (2) of the theorem.
On the other hand, if either o < % or f < % holds, then a sufficient condition for
the stability of the system is given by

T T
A< Ay < —

11—« 1-p

This proves part (3) of the theorem.
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